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Résumé (French Abstract)

Les molécules gazeuses interagissent avec des surfaces solides dans presque tous les en-

vironnements de l’univers. Une fois ces molécules adsorbées sur ces surfaces, on se pose

quelques questions comme: Comment bougent-elles sur ces surfaces? Dans quelle échelle

de temps ce mouvement se passe-t-il? Est-ce que ce mouvement peut être interprété

comme une diffusion classique? Si c’est une diffusion quantique, comment peut-on la

caractériser? Étudier les interactions de ces molécules avec certains métaux a une im-

portance pour la catalyse hétérogène (par exemple pour la synthèse de NH3) , dans la

microélectronique, ou encore dans le stockage d’hydrogène, pour n’en mentionner que

quelques exemples.

Comprendre les réactions chimiques qui ont lieu sur la surface requiert une compréhen-

sion détaillée de sa structure au niveau atomique. La spectrométrie de perte d’énergie des

électrons à haute résolution ("High Resolution Electron Energy-Loss Spectroscopy"), par

exemple, permet d’étudier les modes de vibration de l’adsorbat et même d’identifier des

espèces qui sont adsorbées. Par contre il n’y a pas beaucoup de techniques expérimentales

capables de détailler le mécanisme de la diffusion latérale d’atomes ou de molécules sur

une surface. Des études réalisées par spectroscopie Spin-Echo 3He de la diffusion de CO

sur Cu(001) ont montré que selon les directions < 110 > et < 100 > il y a une dépendance

oscillatoire de l’élargissement quasi-élastique du facteur de structure dynamique en fonc-

tion du transfert de quantité de mouvement. Cela a été modélisé par un mécanisme appelé

diffusion par saut, qui relève de la mécanique classique. De ce modèle il a été conclut

que la relation entre les énergies de barrières des sites «hollow» et «bridge» est environ
EH

EB

≈ 1. Cependant ce résultat n’est pas en accord avec les données actuelles disponibles

à partir de calculs de structures électronique. Un traitement quantique de la diffusion

1
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pourrait expliquer les données expérimentales et en même temps garder l’accord avec les

calculs de structure électronique. Les effets quantiques sur la dynamique et la cinétique

des adsorbats n’ont même pas été bien éclaircis. Dans ce travail, nous aborderons, pour

mieux comprendre les possibles effets quantiques sur la diffusion des espèces adsorbées,

le cas de l’adsorption dissociative de H2 sur Pd(111), parce que ce système s’est avéré le

plus simple à étudier. En fait, dû à la dissociation de la molécule lors de son adsorption,

il sera possible d’apporter des réponses aux questions posées ci-dessus par l’étude plus

simple d’un seul atome d’hydrogène sur le substrat.

Surface de potentiel

La surface de potentiel (SEP) est l’énergie électronique d’un système en fonction des

coordonnées des atomes. La variation d’une SEP, montre le résultat de la compétition

entre l’attraction et la répulsion, par exemple, entre la molécule et la surface.

H2/Cu(100)

Le premier système étudié dans ce travail a été celui de H2 sur Cu(100) où (100) représente

le plan selon les indices de Miller. Pour réaliser ces études sur le substrat, il a fallu bien

comprendre les fonctions multidimensionnelles des SEP qui existent sous forme analytique.

Afin de s’assurer que la SEP [Somers et al., J. Chem. Phys. , vol. 116, n. 9, pp. 3841,

2002; J. Chem. Phys. , vol. 121, n. 22, pp. 11379, 2004.] pouvait être utilisée pour réaliser

ces études, plusieurs résultats de la référence ont été reproduits. Il a donc été constaté que

la SEP n’est pas globale, comme le montre la Figure 1a. Cette figure montre la variation

de l’énergie électronique en fonction de r, la distance entre deux atomes d’hydrogène, et ce

pour une configuration parallèle de H2 à la surface d’adsorption. Le résultat obtenu pour

cette coupe nous fait penser que la diffusion des atomes de H sur la surface de Cu(100)

est totalement libre, soit, sans aucune barrière d’énergie. Cela, n’est pas physique. C’est

la conséquence d’un traitement mathématique artificiel fait dans les références Somers et

al. [J. Chem. Phys. , vol. 116, n. 9, pp. 3841, 2002; J. Chem. Phys. , vol. 121, n. 22,
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pp. 11379, 2004]. On attend en fait une variation de l’énergie lorsque les atomes de H

s’approchent d’un atome de Cu. La ligne en pontillé montre cette fonction attendue, où

l’interaction H −H est plus faible que l’interaction H− Cu. On devrait même attendre

une périodicité avec un période 2re (re = 255 pm, est la distance entre deux atomes

de Cu). Par conséquence, la SEP de H2/Cu(100) est inappropriée pour les études de

diffusion quantique sur le substrat que l’on souhaite faire. Le résultat de cette étude a

été communiqué aux auteurs des références.

H2/Pd(111)

Comme le but du projet n’est pas de développer une nouvelle SEP mais d’étudier la

diffusion d’un adsorbat sur une surface avec une SEP déjà existante, il a été décidé

d’étudier le système H2/Pd(111). La SEP de H2/Pd(111) a été développée par Dong et

al [J. Chem. Phys. , vol. 132, n. 1, pp. 014704, 2010; Phys. Rev. B, vol. 83, n. 22, pp.

125418, 2011.] en utilisant la théorie de la fonctionnelle de la densité [Dong et Hafner,

Phys. Rev. B , vol. 56, n. 23, pp. 15396, 1997.], représentée analytiquement selon la

théorie REBO "Reactive Bond Order". La fonctionnelle utilisée dans le travail de Dong

et al, est celle développée par Perdew et Wang (PW91). Cette SEP décrit l’adsorption

dissociative de H2 sur la surface de Pd dont le plan réticulaire selon les indices de Miller est

(111). La Figure 1b montre une coupe unidimensionnelle en r où l’on voit la périodicité

attendue lorsque les atomes d’hydrogène se déplacent le long du substrat. La sous-routine

de ce potentiel a été réécrite en FORTRAN 90, et modifiée pour pouvoir décrire la diffusion

d’un seul atome d’hydrogène et pour en faire l’interface avec le logiciel MCTDH, discuté

ci-dessous, qui permet d’aborder la dynamique quantique du système.
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(a) SEP de H2/Cu(100) lorsque z = 60 pm. Le

dessin à la main en pointillé représente la fonc-

tion attendue.

(b) SEP de H2/Pd(111) lorsque z = 100 pm.

Figure 1 – Coupes unidimensionnelles des SEP de H2/Cu(100) (a) et de H2/Pd(111) (b)

en fonction de r, la distance entre les deux atomes d’hydrogène. Dans les deux coupes, le

dihydrogène est orienté parallèlement à la surface aux distances z indiquées.

Dynamique quantique

Méthodes

Dans ce travail, le logiciel MCTDH ("Multi-Configuration Time-Dependent Hartree") a

été utilisé pour étudier la dynamique quantique. Le logiciel MCTDH permet de décrire

le mouvement des atomes au vu d’une SEP, selon les règles de la mécanique quantique.

Le logiciel résout l’équation de Schrödinger dépendant du temps i~
∂
∂t
Ψ(t,x) = Ĥ Ψ(t,x)

où i est l’unité imaginaire, ~ est la constate de Planck réduite, égal à h
2π

, et Ĥ est

l’hamiltonien. C’est un opérateur différentiel qui dépend de l’énergie cinétique et de

l’énergie potentielle. Cette dernière est justement la SEP discutée auparavant. Ψ(t,x)

est la fonction d’onde qui décrit l’état du noyau d’hydrogène à l’instant t en fonction de

sa position dans l’espace (x), qui peut être le vecteur à trois dimensions des coordonnées

cartésiennes. Pour le dihydrogène, c’est un vecteur à six dimensions. Plusieurs types

de coordonnées ont été testées pour décrire le mouvement d’hydrogène: les coordonnées

polaires, les coordonnées cartésiennes et les coordonnés "twisted". Pour ces dernières, l’axe

y fait un angle de 120 degrés avec la coordonnée cartésienne x = xc (voir la Figure 2a).

L’espace ainsi formé est non-euclidien. Les coordonnées "twisted" ont finalement été
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retenues car la périodicité du système est beaucoup mieux exploitée dans cet espace.

Les coordonnées cartésiennes sont représentées par xc et yc. Un atome adsorbé peut

faire des vibrations le long de xc et yc, que l’on appelle vibrations parallèles au substrat,

et une vibration le long de z, perpendiculaire au substrat. Les termes vibrationnels

ont été calculés par la méthode de relaxation améliorée en bloc ("improved relaxation in

block form"). La relaxation améliorée ("improved relaxation") optimise les fonctions de

base par une propagation en temps imaginaire τ = −it où les coefficients sont obtenus

par diagonalisation d’une matrice réduite qui représente l’hamiltonien par l’algorithme

de Davidson. La propagation et la relaxation dans MCTDH utilisent la décomposition

Ψ(t,x) =
∑

L
bL(t) ΦL(t,x), où bL(t) sont des coefficients complexes dépendant du temps

et ΦL(t,x) sont les fonctions de base dépendant du temps et du vecteur x. Le fait que

les fonctions de base sont dépendant du temps permet de représenter la fonction d’onde

Ψ(t,x) de forme très compacte. Cela est le grand avantage de la méthode MCTDH,

qui permet ainsi de décrire des problèmes de grande dimensionalité. Le désavantage est

que pour obtenir les fonctions bL(t) et ΦL(t,x), il faut résoudre un système complexe

d’équations différentielles non-linéaires. La résolution de ces équations est effectuée au

sein du logiciel, mais un très grand nombre des calculs préliminaires a été nécessaire pour

s’assurer de la convergence et exactitude des résultats finaux.

Résultats et discussions

Le traitement le plus simple de la dynamique quantique, est celui d’une cellule minimale,

appelée aussi grille 1. Sur la Figure 2a on peut voir les coordonnées x et y choisies

pour décrire le mouvement parallèle sur le substrat. Le losange est la structure la plus

petite qui peut être répétée périodiquement. Dans le losange on voit les sites d’adsorption

d’hydrogène sur Pd(111) les plus stables, "fcc" ("face centered cubic") et "hcp" ("hexagonal

close-packed"). Comme le système étudié est périodique, on voit en pointillé où ces sites

sont trouvés en dehors du losange. La Figure 2b montre une coupe unidimensionnelle

de la SEP le long de la coordonnée cartésienne yc. On y voit les deux sites d’adsorption

"fcc" et "hcp", séparés par une barrière de 13 kJ mol−1 (∼ 1140 hc cm−1 ). La différence

d’énergie entre ces deux puits vaut 2 kJ mol−1 (∼ 160 hc cm−1 ). La courbe pleine
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donne l’énergie électronique. La courbe pointillée représente le premier canal adiabatique

quand on ajoute l’énergie de vibration point zéro (EPZ) des coordonnées autres que

celles montrées dans la Figure 2b. On constate qu’après avoir ajouté l’EPZ à la barrière

électronique, la barrière effective augmente de 3,2 kJ mol−1 (∼ 256 hc cm−1 ). Cela est

déjà un phénomène quantique constaté dans ce travail.
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(a) Cellule unitaire de Pd(111) et

les sites d’adsorption les plus sta-

bles "fcc" et "hcp" (d = 274 pm

est la distance entre les deux

atomes de Pd ).
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(b) Coupe unidimensionelle de la SEP le

long de yc quand xc vaut d
2
.

Figure 2 – Schéma de la cellule minimale et la coupe unidimensionnelle de la SEP le long

de yc.

Le spectre vibrationnel de H sur Pd(111) obtenu par spectrométrie de perte d’énergie des

électrons à haute résolution [Conrad et al, J. Electron. Spectrosc. Relat. Phenom. , vol.

38, n. 0, pp. 289, 1986.] montre deux pics importants, l’un en 96 meV (774 hc cm−1 ) et

l’autre en 126 meV (1016 hc cm−1 ). Saalfrank et Tremblay [J. Chem. Phys. , vol. 131, n.

8, pp. 084716, 2009.] ont calculé les termes vibrationnels fondamentaux pour le système

H/Pd(111) et ont obtenu 717,4 cm−1 et 922,4 cm−1 . Ils ont attribué le premier terme à

la vibration parallèle sur le site "fcc" (νp,fcc) et le deuxième à la vibration perpendiculaire

sur le site "fcc" (νz,fcc). Ils ont calculé aussi les termes vibrationnels concernant les vibra-

tions parallèle et perpendiculaire sur le site "hcp" (928,2 et 1117,7 cm−1 , respectivement).

Les transitions spectrales fondamentales correspondant à ces termes ne peuvent pas être

distinguées expérimentalement pour cause de la basse résolution de la technique expéri-

mentale. Les termes vibrationnels issus du présent travail par l’utilisation de MCTDH, en

particulier par la relaxation améliorée en bloc, sont 743,6 et 1047,6 cm−1 pour les modes
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de vibration parallèle et perpendiculaire, respectivement, sur le site "fcc" 920,2 ainsi que

1200,2 cm−1 , sur le site "hcp". Ces résultats théoriques sont en bon accord avec le spectre

expérimental et même mieux que ceux obtenus dans les travaux de Saalfrank et Tremblay.

Un autre résultat original de ce travail est la découverte que les états stationnaires de

vibration perpendiculaire ne sont pas localisés aux sites "fcc" et "hcp". Ces états sont le

résultat d’une interaction entre 4 modes de vibration localisés; ces modes localisés sont:

un mode avec 1 quantum d’énergie de vibration perpendiculaire et un autre mode avec

2 quanta d’énergie de vibration parallèle, et ce pour les deux sites. Les états correspon-

dant aux termes 1047,6 et 1200,2 cm−1 susmentionnés ne sont que deux membres de cet

ensemble de 4 états délocalisés. Cette découverte a été faite par l’analyse de la densité de

probabilité des états vibrationnels. Les Figures 3a et 3b donnent les positions d’isodensité

et montrent la densité de probabilité dans les plans xcyc et xz pour l’état correspondant

à environ 1200 cm−1 . On aperçoit que la densité de probabilité est délocalisée et qu’il

y a un mélange de modes localisés sur le sites "fcc" et "hcp". Sur la Figure 3a on voit

qu’au site "hcp", pour lequel xc est négatif, il y a un étalement important dans le plan

xcyc tandis que sur le site "fcc", pour lequel xc est positif, la densité est plutôt localisée.

Ce premier étalement correspond à l’harmonique d’un mode parallèle le long de xcyc.

La nature de la densité sur le site "fcc" ne peut correspondre qu’à l’état ayant 1 quan-

tum d’énergie dans le mode de vibration perpendiculaire. Si l’on regarde la Figure 3b,

on confirme cette attribution. On y voit qu’effectivement sur le site "hcp" on trouve un

n£ud sur z et un n£ud net sur x. Mais sur le site "fcc" on ne trouve qu’un n£ud sur

z. Ainsi, cet état de vibration possède un mode avec 1 quantum d’énergie dans le mode

de vibration perpendiculaire sur le site "fcc", un mode avec 1 quantum d’énergie dans le

mode de vibration perpendiculaire sur le site "hcp" et un mode avec 2 quanta d’énergie

dans le mode de vibration parallèle sur le site "hcp".

Les termes vibrationnels ont aussi été calculés pour une grille 2 et pour une grille 3. La

grille 2 contient 4 sites "fcc" et 4 sites "hcp" et correspond ainsi à un degré de recouvre-

ment égal à 12,5 %. La grille 3 contient 9 sites "fcc" et 9 sites "hcp", avec un degré de

recouvrement égal à 5,6 %. Ainsi pour la grille 2 il y a une dégénérescence égale à 4 pour

le niveau fondamental sur le site "fcc" et 4 pour le site "hcp". Pour la grille 3 il y a une
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Figure 3 – Densité de probabilité pour la grille 1. Dans (a), seulement la densité au sein

de la cellule minimale est montrée.

dégénérescence égale à 9 pour le site "fcc" et 9 pour le site "hcp". Pour les grilles 2 et 3,

à mesure que l’énergie des niveaux augmente, on a constaté un éclatement des niveaux

vibrationnels et la formation de bandes dont la largeur est donnée par la différence entre

la borne minimale et la maximale de l’éclatement. La dégénérescence égale à 2, observée

pour le mode vibrationnel parallèle (le long de xc et yc) pour la grille 1, n’est plus observée

ni pour la grille 2 ni pour la grille 3. Cet éclatement de la dégénérescence constaté lorsque

l’on diminue le degré de recouvrement (grille 2 et 3) et que l’on s’approche de la barrière

d’énergie est dû à l’effet tunnel quantique. Cet effet est lié au couplage entre les modes

localisés de même symétrie.

Une simulation de la dynamique quantique en fonction du temps, où le mode de vibra-

tion perpendiculaire sur le site "fcc" est excité avec un quantum d’énergie, a été faite.

L’état donc initialement localisé sur le site "fcc" possède un mouvement perpendiculaire

au substrat selon la dynamique classique. La modélisation quantique de la dynamique

de diffusion montre qu’au bout de quelques dizaines de femtosecondes (1 fs = 10−15 s)

l’atome commence à bouger parallèlement au substrat, ce qui correspond à un mouvement

latéral de diffusion. Ce mouvement ne peut pas être expliqué par la mécanique classique,

car en même temps que la diffusion commence à avoir lieu sur le site "fcc", l’atome com-

mence à apparaître sur le site "hcp" qui se situe à environ 200 pm de distance du premier

(2b). Cette délocalisation instantanée est caractéristique de la mécanique quantique, ce

qui nous permet de dire que la diffusion de l’atome suit intimement les règles de cette mé-
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canique. À la suite de cette modélisation on constate que l’état initial est partiellement

rétabli au bout d’une centaine de femtosecondes (∼ 150 fs) et que la diffusion recom-

mence à nouveau. Cette quasi-périodicité du mouvement est une autre caractéristique de

la dynamique quantique. Le mouvement serait strictement périodique s’il résultait de la

superposition de deux états stationnaires uniquement. Cet étude montre, par contre, que

les modes localisés sont décrits par plusieurs états stationnaires ou, inversement, que les

états stationnaires sont décrits par plusieurs modes localisés qui sont quasirésonants et

fortement couplés. En spectroscopie vibrationnelle, ce phénomène est appelé résonance

de Fermi, en l’honneur d’Enrico Fermi qui a expliqué les bandes d’infrarouge interdites de

l’étirement symétrique de CO2. La liaison chimique est un autre exemple d’une résonance

quantique, où l’état lié d’une molécule est le résultat d’un fort couplage entre les orbitales

frontière, localisées sur les atomes entre lesquels la liaison est formée.

Conclusion et perspectives

Ce travail a permis une meilleure description du spectre infrarouge de H2/Pd(111) qui

peut être confondu avec le système H/Pd(111) à bas degré de recouvrement, puisque

l’adsorption du dihydrogène est dissociative. Quand le degré de recouvrement est grand,

des interactions entre les atomes d’hydrogène peuvent être importantes. L’étude du sys-

tème H2/Pd(111) à six dimensions devrait permettre de savoir si les interactions entre les

atomes d’hydrogène sur le substrat sont vraiment importantes. Or, les données expéri-

mentales ne sont pas capables pour l’instant de distinguer ces deux systèmes. La théorie

est donc le seul moyen de comprendre la nature des états. Ce travail a en particulier mis

en évidence un important phénomène de résonance quantique entre des états localisés sur

différents sites d’adsorption. Dans le présent exemple de l’adsorption de H sur Pd(111),

ce phénomène gouverne la diffusion de l’atome dans une échelle de temps ultra rapide (fs)

que nous devrons donc nommer diffusion quantique.



Introduction

This thesis deals specifically with quantum dynamical calculations of the lateral diffusion

of hydrogen atoms on Pd(111) and a complete description of infra-red spectrum of H2

and H on this substrate. It is known that molecules and atoms in the gas phase interact

with solid surfaces in almost every environment in the universe. This interaction often

leads to the adsorption of the gas phase species on the solid surface. The latter is then

called the substrate, the former the adsorbate. To understand the dynamics of a surface

process, it is in general necessary to systematically study the elementary steps of the

process in terms of simple model systems. A surface process is often quite complex, but

can be decomposed into a number of elementary processes, such as adsorption, vibration,

diffusion, rotation, reaction and desorption of the adsorbate. In practice, these elementary

processes are studied by identifying and considering simple model systems.

One of the goals in theoretical studies of adsorbate-substrate interactions is to understand

the nature of the forces that act on them. Several important physical and chemical

processes may occur such as reaction (dissociation), or the back scattering (diffraction)

into the gas phase in a vibrationally or rotationally excited state, or with a quantized

change in the momentum parallel to the surface. In addition, coupling to the phonons

and to electron-hole pair excitations may be important [5, 6].

Very few basic studies of the dynamics of molecular adsorption have been undertaken,

to date, at a microscopic level and several fundamental questions remain without proper

answer. When the molecules or the atoms are adsorbed we do not really know how

they move on the surface. In what time-scale is this movement going on? Can this

movement be interpreted as a classical diffusion? If it is a quantum diffusion, how can it

10
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be characterized?

According on the strength of the adsorbate-substrate interaction, the adsorption can be

called physisorption or chemisorption. Normally, during the physisorption (often also

considered as non dissociative adsorption) the adsorbate does not react much with the

substrate and it can be easily desorbed when the surface temperature is increased. The

interaction between the adsorbate and the substrate is maximally about 20 kJ mol−1 [7].

However, during the chemisorption (often also considered as dissociative adsorption), the

adsorbate reacts with the substrate, forming a rather strong chemical bonding (often

covalent, with about 200 kJ mol−1) [7]. Examples are H2/Pt(111) [2], H2/Cu(100) [2,3,8–

11], H2/Pd(111) [1,12], but also CO/Cu(100) [13], which is an example of non-dissociative

chemisorption.

Surface dynamical processes are microscopic pathways in technologically important macro-

scopic processes such as the synthesis of ammonia from the elements N2 + 3H2
Fe−−→

2NH3 [14, 15], a very famous example for heterogeneous catalysis, the hydrogen storage

by physisorption [16] on graphenes or zeolites, the development of microelectronics and

computer technologies [17].

These processes are related to the motion of the adsorbates on the substrate. At low

energies, these are essentially vibrations around the equilibrium adsorption site. Today,

there are techniques of high-sensitivity able to study of adsorbate vibrations. We men-

tion here Fourier transform infra-red (FT-IR) spectrometry [18], energy loss spectroscopy

(EELS) [19, 20] and High-Resolution Electron Energy Loss Spectroscopy (HREEL) [21–

24]. On the other hand, few experimental techniques are capable to detail the mechanism

of the lateral diffusion of atoms or molecules on a surface. Ellis et al [25] used 3He Spin-

Echo Spectroscopy to study the motion of CO on Cu(001) and observed both along the

〈110〉 and 〈100〉 directions an oscillatory dependence of the quasielastic broadening of the
dynamical structure factor of the signal due to the scattered helium atoms as a function

of momentum transfer.

This was modeled by a jump diffusion mechanism which allowed them to conclude that the

ratio between the barrier energy of hollow and bridge site is approximately EH/EB ≃ 1.

While this result is in disagreement with current available data from electronic structure
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calculation [13], it shows how relevant are genuine quantum dynamical calculations for

the description of the frustrated translational motion of adsorbed molecules. A quantum

treatment of the diffusion could explain the experimental data and at the same time keep

the agreement with the electronic structure calculations. Quantum effects of the dynamics

and of the kinetics of adsorbates have not even been clarified.

The thesis is organized as follows: In Chapter 1, we present the principal methods used to

perform the study of quantum dynamics with particular emphasis on the representation

of the potential energy surface as a linear combination of products of one-dimensional

functions especially for the systems that are bigger than three-dimensional (3D), the

calculation of vibrational eigenstates and the propagation of wave packets. In Chapter 2,

we present the potential energy surfaces and grids considered for the dynamical studies.

We start to present the plan (111) of the face-centered cubic lattice for palladium where

the hydrogen atoms are adsorbed and the diffusion process takes place. Some details

pertaining to the potential energy surface (PES) of H2/Pd(111) and the PW91 functional

used to develop this PES from first principle calculations are summarized here. It is

important to emphasize that the PES, which was used in this thesis, was developed and

analytically represented by Dong [1, 12, 26–28]. This PES considers the palladium atoms

rigid, phonons are hence neglected. The analysis of the PES of H/Pd(111), also carried

out in this Chapter, shows which adsorption sites are more stable and the the barrier

energy. In Chapter 3, we present the vibrational eigenstates of the adsorbed hydrogen

atom and its isotopes on Pd(111). Following the study of this 3D system, we present the

wave-packet propagation of H,D and T on Pd(111) and thermal wave packet propagation

of H/Pd(111). In Chapter 4, we present the 6D system, i.e. the H2/Pd(111) system. In

Chapter 5 we show that the PES of H2/Cu(100) [2, 3, 11], originally planned to be used

at the beginning of this thesis, is inadequate to study the lateral diffusion because it fails

to be global. Finally, in Chapter 6, we show the principle of the quantum calculations of

the diffusion rate of adsorbates and the calculations that are necessary to simulate the

3He spin-echo technique by considering the vibrational eigenstates and eigenfunctions of

the adsorbed species.



Chapter 1

Methods

In this chapter a brief overview of the methods used in this work is presented.

1.1 Potential energy surface

The potential energy surface (PES) is a very useful conceptual tool in physical chemistry

that allows us to model chemical reactions and interactions in simple systems. The time-

independent Schrödinger Eq. (1) can be separated into one part which describes the

electronic wave function for a fixed nuclear geometry, and a second part which describes

the nuclear wave function, where the energy from the electronic wave function plays the

role of a potential for the nuclear motion. This approximation is very often good because

in a molecule the nuclei are essentially stationary compared to the electrons (the mass of

the proton is about 1800 times larger than that of the electron). This separation is called

the Born-Oppenheimer approximation. In practice, the electronic wave function depends

parametrically on the nuclear coordinates [29].

13
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The total, time-independent Schrödinger equation reads :

EnΨn = ĤΨn (1)

where Ĥ is the Hamiltonian operator for a system of nuclei and electrons, that acts on

certain wave function Ψn and En is the energy of the state Ψn. The subscript n denotes

the state of system. The total Hamiltonian can be written as the sum of the electronic

Hamiltonian and the kinetic energy of the nuclei, Eq. (2), where the subscript n is used

for nuclei and e for electron.

Ĥtot = Ĥe + T̂n (2)

Ĥe = T̂e + V̂ne + V̂ee + V̂nn (3)

Ψtot = ΨnΨe (4)

EeΨe = ĤeΨe (5)

(T̂n + Ee)Ψn = EtotΨn (6)

In Eq. (3), the first term is the operator for the kinetic energy of the electrons; the second

term represents the Coulomb attraction between electrons and nuclei; the fourth and

fifth terms represent the repulsion between electrons and between nuclei, respectively. In

Eq. (4), the electron wave function Ψe is supposed to vary parametrically with the position

of the nuclei. Similarly, the electronic energy Ee will be a function of the position of the

nuclei. In the Born-Oppenheimer approximation, one neglects the action of T̂n, the kinetic

energy operator of the nuclei, on the electronic wave function Ψe. Eq. (6) shows finally

that the electronic energy can be interpreted as a potential surface for the motion of

the nuclei. Electronic structure theory [29] deals with computational methods to solve

Eq. (1). The PES used for the dynamical calculations in this thesis was developed by the

density-functional theory, and will be addressed later.
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1.2 Quantum dynamics

For the description of the hydrogen motion in the lowest adiabatic electronic state as a

function of time, one solves the time-dependent Schrödinger equation

i~
∂

∂t
Ψ({xi, yi, zi}, t) = Ĥ Ψ({xi, yi, zi}, t) (7)

where i is the imaginary unit, ~, the reduced Planck constant equals h
2π
. Ψ({xi, yi, zi}, t)

is the wave function that describes the state of hydrogen nuclei at time t in function of

this position in space ({xi, yi, zi}). For one hydrogen atom (i = 1) and for the hydrogen

molecule (i = 1, 2).

To simplify the representation of time-dependent Schrödinger equation (eq. (7)), I will

adopt in the following the bra-ket notation. The position in space ({xi, yi, zi}) will be
associated to the vector-ket | Ψ 〉 then we can re-write the Eq. (7) as

i~
∂

∂t
| Ψ(t) 〉 = Ĥ | Ψ(t) 〉 (8)

The Hamiltonian Ĥ is the differential operator that depends on the kinetic energy operator

T̂ and the potential energy operator V̂ (Eq. (9)).

In this work a set of coordinates was chosen that is non-Euclidean, in order to exploit the

periodicity of the elementary cell on the (111) surface. The primitive cell is formed by

skewed axes, which form an angle α = 1200 (see Fig. 9 or page 45). The Hamiltonian Ĥ

which represents the twisted coordinate system for M nuclei is

Ĥ = −
M∑

i=1

2
3Mi

(∂2
xi
+ ∂xi

∂yi
+ ∂2

yi
) −

M∑

i=1

1
2Mi

∂2

∂z2

i

+ V ({xi, yi, zi}) (9)

where xi, yi, are the coordinates for the motion parallel to the substrate, the "frustrated

translation" and zi defines the distance of the each atom from the plane formed by the first

layer of frozen Pd atoms. V ({xi, yi, zi}) is the H − Pd(111) interaction potential involving
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all hydrogen atoms. The calculation of expectation values of the twisted coordinates xi

and yi is carried out, within the MCTDH program, as if these coordinates were Cartesian.

The volume element ratio between the Cartesian and the skewed elementary cell,
1

sin(1200)
= ( 2√

3
), must therefore be multiplied to all observable quantities obtained from

the MCTDH code using these coordinates.

1.3 Multiconfiguration Time-Dependent Hartree

To determine the time evolution of the nuclei wave function, Ψ({xi, yi, zi}, t), we use the
algorithm implemented in the Multiconfiguration Time-Dependent Hartree program

(MCTDH) [30] that represents the Hamiltonian in terms of products of time dependent,

one dimensional functions φ, the so called "single particle" functions (SPF) [31–33]. In

the case of one hydrogen atom, the development of the wave function is then given as

Ψ(x, y, z, t) =
Mx∑

mx=1

My
∑

my=1

Mz∑

mz=1

Amx,my,mz
(t)φ(x)

mx
(x, t)φ(y)

my
(y, t)φ(z)

mz
(z, t) (10)

To reduce the size of the coefficient vector Amκi
, the coordinates ({xi, yi, zi}) can be

combined to a logical one, Qi, also called combined mode of particles. Mode combination

becomes interesting in the case of molecular hydrogen, the development of the wave

function is then given as

Ψ(Q1, Q2, Q3, t) =
Mκ1∑

mκ1
=1

Mκ2∑

mκ2
=1

Mκ3∑

mκ3
=1

Amκ1
,mκ2

,mκ3
(t)φ(κ1)

mκ1

(Q1, t)φ(κ2)
mκ2

(Q2, t)φ(κ3)
mκ3

(Q3, t)

(11)

where Q1 = [x1, y1], Q2 = [x2, y2] and Q3 = [z1, z2] represent the mode of the combination

of coordinates chosen. We combined the modes of the frustrated translation (parallel

motion) (xi, yi) for each hydrogen atom separately because these coordinates are coupled.

The coordinates zi that represent the distance of hydrogen atoms to the substrate are

combined.
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In practice, for the case of one hydrogen atom, the SPF are in their turn developed in

terms of time independent primitive basis functions (PBF) χ :

φ(x)
mx
(x, t) =

∑Nx
nx=1 cnxmx

(t)χ(x)
nx
(x)

φ(y)
my
(y, t) =

∑Ny

ny=1 cnymy
(t)χ(y)

ny
(y)

φ(z)
mz
(z, t) =

∑Nz
nz=1 cnzmz

(t)χ(z)
nz
(z)







(12)

and for the case of molecular hydrogen, the developed in terms of time independent

primitive basis functions (PBF) χ is give as

φκ1

mκ1

(x1, y1, t) =
∑Nx1

nx1
=1

∑Ny1

ny1
=1 cnx1

ny1
mκ1

(t)χ(x1)
nx1

χ(y1)
ny1

φκ2

mκ2

(x2, y2, t) =
∑Nx2

nx2
=1

∑Ny2

ny2
=1 cnx2

ny2
mκ2

(t)χ(x2)
nx2

χ(y2)
ny2

φκ3

mκ3

(z1, z2, t) =
∑Nz1

nz1
=1

∑Nz2

nz2
=1 cnz1

nz2
mκ3

(t)χ(z1)
nz1

χ(z2)
nz2







(13)

If χ(α)
nα

and χ(β)
nβ

are Discrete Variable representations (DVR) functions (see section 1.7),

the product of the PBF χ(α)
nα
χ(β)

nβ
defines a two dimensional DVR.

The equations determining the time evolution of the coefficients Amκ1
,mκ2

,mκ3
(t) (the "A-

vector") where (κ1 = (x1, y1), κ2 = (x2, y2) and κ3 = (z1, z2)), as well as these of the PBF

expansion coefficients c...mκi
(t) (i = 1, 2, 3) of the single particle functions are derived from

the Dirac-Frenkel variational principle [31] (〈 δΨ | i~ ∂
∂t

− Ĥ | Ψ 〉 = 0).

The advantage of this program is that the total number of SPF,M =Mκ1
×Mκ2

×Mκ3
can

be made to be much smaller than the total number of PBF, which makes this program

very attractive when compared to other programs [32–34] for the solution of the time

dependent Schrödinger equation (Eq. (8)).

1.4 Product representation of potential energy sur-

faces

Normally the representations of potential energy surfaces (PES) are, by their nature,

multidimensional and for an optimal performance of the MCTDH method, it is essential
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to represent the Hamiltonian by a linear combination of products of one-dimensional

functions similarly to the representation of the time dependent function, removing the

need to calculate difficult multidimensional integrals in the solution of the equations

of motion. As shown in Eq. (9), the kinetic energy operators are already in such form.

However, the potential energy operator V needs to be re-fitted to a sum-of-products form.

To obtain V in product-form, one can re-fit the V using the POTFIT procedure [35–37].

The most direct way to the product form is an expansion in a product basis. The expansion

of potential energy operator of hydrogen atom (3D) V (x, y, z) in sum-of-product form is

given as

V (x, y, z) ≈ V app(x, y, z) (14)

V app(x, y, z) =
kx∑

nx=1

ky∑

ny=1

kz∑

nz=1

Bnx,ny,nz
v(x)

nx
(x)v(y)

ny
(y)v(z)

nz
(z) (15)

where x, y, and z are the coordinates, Bnκ
are the coefficients, v(κ)

nκ
are the natural poten-

tials and kα (α = x, y, z) are expansion numbers.

The expansion of potential energy operator of molecular hydrogen (6D) V (x1, y1, z1, x2, y2, z2),

where (x1, y1, z1) are the twisted coordinates of the first hydrogen atom and (x2, y2, z2)

those of the second hydrogen atom, in sum-of-product form is given as

V (x1, y1, z1, x2, y2, z2) ≈ V app(x1, y1, z1, x2, y2, z2)

=
kκ1∑

nκ1
=1

kκ2∑

nκ2
=1

kκ3∑

nκ3
=1

Bnκ1
,nκ2

,nκ3
v(1)

nκ1

(x1y1)v(2)
nκ2

(x2y2)v(3)
nκ3
(z1z2)

(16)

The expansion orders, nκi
, must be chosen large enough to achieve an accurate expansion.

However this choice should be as small as possible, because the numerical effort of an

MCTDH propagation grows (almost linearly) with the number of potential terms, that

is, with the product of the expansion orders. Hence both the expansion coefficients and

SPF should be optimized to provide the best approximative potential for a given set of

expansion orders [33].
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For the hydrogen atom (3D), the expansion coefficients Bkκ
, are determined by the over-

laps between the potential V (x, y, z) and the natural potentials v(κ)
kκ
. Given the grid

representation (DVR),

Bkx,ky,kz
≡

Nx∑

nx=1

Ny
∑

ny=1

Nz∑

nz=1

V (xnx
, yny

, znz
)v(x)

kx
(xnx

)v(y)
ky
(yny

)v(z)
kz
(znz

) (17)

Since the orthonormal product basis set is complete over the grid points, the approximated

and the exact potential are identical at the grid points, if the expansion orders and the

number of grid points are equal, i.e., V app → V for kκi
→ Nκi

. Note that the expansion

coefficients are independent of the expansion orders.

To decrease the number of expansion terms s =
∏f

i=1 nκi in Eq. (16) by a factor of nκi
,

then, one contracts the expansion coefficients

Dnκi
(χ(κi)

nκi
) =

kκi∑

nκi=1

Bnκi
v(κi)

nκi
(18)

and re-write the expansion of the approximated potential as

V app(x1, y1, z1, x2, y2, z2) =
kκ1∑

nκ1=1

kκ2∑

nκ2=1

v(1)
nκ1

(χ(1)
nκ1

)v(2)
nκ2

(χ(2)
nκ2

)
kκ3∑

nκ3=1

Bnκ3
v(3)

nκ3

(19)

The contraction of the coordinates is a very helpful trick, as it substantially reduces the

numerical effort of the following MCTDH calculation without affecting the accuracy of

the product expansion. In this work, it was chosen to contract the coordinate z for one

hydrogen atom (system 3D) and z1 and z2 for the molecular hydrogen (6D system).

Results from POTFIT are not perfect for systems that are more than three-dimensional,

but it was observed that the algorithm usually provides fits that are close to optimal. For

two dimensional the expansion is perfect, i.e., the L 2-error is minimal [31]. The L 2-error

is defined as the sum of the squares of the moduli of the fit errors on all product grid

points.
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The L 2-error is given by [35, 36]

L
2 =

kκ1∑

nκ1
=1

kκ2∑

nκ2
=1

kκ3∑

nκ3
=1

(V (x1, y1, z1, x2, y2, z2)− V app(x1, y1, z1, x2, y2, z2))
2

=
kκ1∑

nκ1
=1

kκ2∑

nκ2
=1

kκ3∑

nκ3
=1

[

(V (x1, y1, z1, x2, y2, z2))2 − (V app(x1, y1, z1, x2, y2, z2))2
]

=
kκ1∑

nκ1
=1

kκ2∑

nκ2
=1

kκ3∑

nκ3
=1

|Bnκ1
,nκ2

,nκ3
|2 (20)

Typically, the L 2-error, drops by 10 − 20 % when fully optimizing the SPP. Only when

too small values for the expansion orders were used, resulting in a rather inaccurate fit,

we observe a lowering of the L 2-error by about 40 %. However, these investigation could

only be done on small three-dimensional systems [33].

To efficiently construct potential energy operators and to reduce the numerical effort of

the following MCTDH calculation, a relevant region [37] can be chosen. In general, not

all regions of the potential energy of surface are equally relevant for the process under

investigation. The introduction of an appropriately chosen weight function w then allows

the enhancement of regions of the surface with greater physical relevance. In this work the

representation of the 3D potential V (x, y, z) as a linear combination of products was made

without choosing a relevant region. However, for the 6D system, V (x1, y1, z1, x2, y2, z2),

it was necessary to use a weight function w to define a relevant region because this

representation becomes too expensive.
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1.5 Propagation

Eigenstates of the Hamiltonian solve Eq. (21)

Ĥ | ϕn 〉 = En | ϕn 〉 (21)

En is the corresponding eigenvalue. Knowing the En and the | ϕn 〉 we can solve the time-
dependent Schrödinger equation, i.e., determine the time evolution of a state. Indeed, the

| ϕn 〉 form a basis, thus for each value of t, we can develop a state | Ψt 〉 on the | ϕn 〉 :

| Ψ(t) 〉 =
∑

n

Cn(t) | ϕn 〉 (22)

with

Cn(t) = 〈 ϕn | Ψ(t) 〉 (23)

The | ϕn 〉 do not depends on t thus the temporal dependence of | Ψ(t) 〉 is contained in
the Cn(t). Therefore, to calculate the Cn(t), we project the time-dependent Schrödinger

equation on each state | ϕn 〉, thus we have

i~
∂

∂t
〈 ϕn | Ψ(t) 〉 = 〈 ϕn | Ĥ | Ψ(t) 〉 (24)

The observable Ĥ is Hermitian, therefore we can deduce from Eq. (21) that

〈 ϕn | Ĥ = En 〈 ϕn | (25)

Eq. (24) can be re-written as

i~
∂

∂t
Cn(t) = EnCn(t) (26)
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The result of integration of Eq. (26) is given by

Cn(t) = Cn(t0)e−iEn(t−t0)/~ (27)

If we know the | Ψ(t0) 〉, to find | Ψ(t) 〉, we have to develop | Ψ(t0) 〉 on the basis of

eigenstates of Ĥ

| Ψ(t0) 〉 =
∑

n

Cn(t0) | ϕn 〉 (28)

where Cn(t0) is given as

Cn(t0) = 〈 ϕn | Ψ(t0) 〉 (29)

| Ψ(t) 〉, for some t, is given by

| Ψ(t) 〉 =
∑

n

Cn(t0)e−iEn(t−t0)/~ | ϕn 〉 (30)

where En is the eigenvalue of Ĥ associated at the state | ϕn 〉.

We can link the states of the system at two different times t and t0 using a linear operator

of propagation, | Ψ(t) 〉 = U(t, t0) | Ψ(t0) 〉, thus we can go from | Ψ(t0) 〉 (vector of state
at t0) to | Ψ(t) 〉 (vector of some later state). Integrating the time-dependent Schrödinger
equation, we have

U(t, t0) = e−iH(t−t0)/~ (31)

Applying the operator U(t, t0), we have



Methods 23

U(t, t0) | ϕn 〉 = e−iH(t−t0)/~ | ϕn 〉 = e−iEn(t−t0)/~ | ϕn 〉 (32)

where | ϕn 〉 is eigenvector of Ĥ with eigenvalue En.

The autocorrelation function is given as

A(t) = 〈 Ψ(t0) | Ψ(t) 〉 =
∑

m

∑

n

C∗
m(t0)Cn(t0)e−iEn(t−t0)/~ 〈 φm | φn

︸ ︷︷ ︸

δmn

〉

=
∑

n

| Cn(t0) |2e−iEn(t−t0)/~ (33)

Applying the Fourier transform (FT) to autocorrelation function A(t) (Eq. (33)) when

t0 = 0, we have

F[A(t)](E) =
∑

n

| Cn(0) |2δmn(E −En) (34)

The FT of autocorrelation function A(t) gives the peaks at the positions that correspond

to the eigenvalues. The intensity of the peak gives the weight with which eigenstates

participate at the state. For a propagation calculation, an initial wave packet | Ψ0 〉 must
be well chosen such as to find a desired eigenstate φn, the wave packet must have an

important overlap Cn.

1.6 Calculation of vibrational eigenstates

The three-dimensional (3D) and six-dimensional (6D) anharmonic vibrational eigenstates

for H/Pd(111) and H2/Pd(111) and their energies are calculated using a variant of the

improved relaxation method [38–40] called improved relaxation in block form [33, 41, 42].

In the block relaxation method the SPF are optimized to represent all states calculated

therefore it is necessary to include more SPF to obtain results quantitative when it is

calculated the excited states. However, this calculation takes a long time to finish and

a larger consumption of memory but it requires much less human effort to run a block-

relaxation as compared to run, i.e., 218 single relaxations. In practice, the improved
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relaxation method use the SPF optimized by relaxation, i.e. a propagation of the wave

packet in negative imaginary time: τ = −it and the coefficients are obtained by diagonal-

izing the resulting Hamiltonian matrix by the Davidson algorithm [43]. The propagator

becomes a simple decreasing exponential:

U(t, 0) = e−iĤτ

= e−Ĥt (35)

From Eq. (22), let | Ψ(t0) 〉 = ∑

n Cn(t0) | ϕn 〉, where | ϕn 〉 are (unknown) eigenstates.
The MCTDH equations of motion are derived by applying the Dirac-Frenkel variational

principle [31] to ansatz Eq. (10). This yields

Ψ(t0) =
∑

I

AI(t0)ΦI(t0) (36)

As explained above, the improved relaxation method computes the ground states by

propagation in negative imaginary time, determining the A-vector and the SPF at t0.

Consider now the matrix H(t0), with matrix elements

HIJ(t0) = 〈 ΦI(t0) | H | ΦJ (t0) 〉 (37)

Diagonalization of this matrix yields a lowest eigenvalue E(1)
0 , where likely E(1)

0 6= E1, the

lowest eigenvalue (unknown) that participates at the definition of Ψ(t0), thus, during a

propagation in imaginary time until an adequate time t1, all the states will be filtered out

but ϕ1. The initial wave packet Ψ(t0) =
∑

I AI(t0)ΦI(t0) is decomposed in the stationary

states ϕk. Applying the propagator (35) with Ĥ − E1, where Ĥ is the Hamiltonian and

E1 is the unknown eigenvalue corresponding to the eigenstate ϕ1.
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U(τ, 0;E1) | Ψ(t0) 〉 = e−i(H−E1)t/~(
∑

k

Ck | ϕk 〉)

=
∑

k

Cke
−i(Ek−E1)t/~ | ϕk 〉)

=
∑

k > 1

Cke
−i(Ek−E1)t/~ | ϕk 〉+ C1 | ϕ1 〉 (38)

and







∑

k 6= 1 Cke
−i(Ek−E1)t/~ | ϕk 〉 → 0 t → t1

↔ U(τ, 0, E1) | Ψ(t0) 〉 → |ϕ1 〉 t → t1

(39)

if t1 is sufficiently large.

The cycle starts again by diagonalizing H(t1), with matrix elements

HIJ(t1) = 〈 ΦI(t1) | H | ΦJ (t1) 〉 (40)

Let the lowest eigenvalue E(1)
1 . Likely, E(1)

1 6= E1, but it can be expected that

|E(1)
1 − E

(1)
0 | < |E(1)

0 − E1|, where E1 is the exact energy of the state sought. Hereafter,

one starts an other diagonalisation in the new configuration space built from the new SPF

obtained and the propagation in imaginary time is made until time t2, etc. This iteration

method is repeated until convergence [39].

Indeed, it is possible to start with a block of initial vectors which then converge collectively

to a set of eigenstates. Formally, the different wave functions are treated as different

electronic states of one super-wavefunction. The mean fields are state-averaged mean

fields, and the Davidson routine is replaced by a block-Davidson one. Block-relaxation

requires more SPF to converge than single-vector relaxation because in block relaxation

the SPF are optimized to represent all considered states simultaneously, while in single-

vector relaxation they are optimized to represent a single state. However, we found that

the required increase in the number of SPF is rather small. In fact, block relaxation is,
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in general, more efficient than performing single-vector relaxations for each of the block

states. However, the memory consumption of block relaxation is considerably larger.

This limits the applicability of block improved relaxation when turning to larger systems.

However, when block relaxation is feasible memorywise, it is certainly to be preferred over

single-vector relaxation. Block relaxation can be run in a modus where the lowest nblock

eigenenergies above some predefined energy threshold are computed. This feature is very

convenient when all eigenstates within some energy interval are to be determined.

1.7 Discrete Variable representation (DVR)

The DVR basis which also called primitive basis in the following is the elementary rep-

resentation basis of wave functions and operators used in this work. It corresponds es-

sentially to a discretization of space and allocates a label to each degree of freedom in

the system. DVR representations are used to set up the single-particle functions of an

MCTDH (relaxation and propagation calculations) or the product grid (POTFIT) rep-

resentation of the PES. With this representation one obtains diagonal matrices for the

potential energy - at least approximatively. A more detailed discussion of the DVR tech-

nique can be found in Appendix B of the review [32]. The DVR chosen to describe

operators and wave functions for the system in (3D) and (6D) are:

• for χ(x) functions the EXP-DVR functions of x.

• for χ(y) functions the EXP-DVR functions of y.

• for χ(z) functions the Sine-DVR functions of z.

The exponential DVR is related to plane waves. It is therefore often used for dissociative

degrees of freedom. Moreover, Exponential and Sine DVR functions are the only primitive

basis representations within the MCTDH program that satisfy periodic boundary condi-

tions. To describe the lateral movement of hydrogen atoms to the substrate (coordinates

x and y) and the dissociation of molecular hydrogen, the periodic boundary conditions

given by the exponential DVR functions are a good choice. The Sine-DVR was chosen to

represent the distance of hydrogen from the plan of substrate (coordinate z). The choice

of the system of coordinates to describe the dissociation of molecular hydrogen and the
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"frustrated translation" of hydrogen atoms to the substrate will be discussed in Chapter

2.

1.8 Integration scheme

The efficiency of the MCTDH method depends on the algorithm used to solve a system

of coupled nonlinear ordinary differential equations of first order. For the two systems

studied in this work, was used for the evolution of the A-vector the "constant mean-field"

(CMF) integration scheme such that during the integration, one may hold the Hamiltonian

matrix elements and the products of the inverse density and mean-field matrices constant

for some time τ .

For imaginary time propagations within the block relaxation method for the determination

of eigenstates, the Davidson integrator (DAV) was used. The convergence is hence toward

that eigenstate that has the largest overlap with the initial guess. A technical remark is

in order. As the dimension of the space spanned by the configurations is rather large

typical values range from 2000 to 2 000 000, the Davidson algorithm [43] is employed for

diagonalization. When excited states are computed, especially by the block relaxation

method, because it allows us to calculate several eigenstates at the same time, one may

additionally improve the preconditioner by inverting a, say 1000×1000, block around the

energy of interest. This accelerates the convergence of the Davidson iterations. In fact

the routine used in this work is called (rrDAV), that uses the same Davidson routine, but

the (rrDAV) is employed to performed the matrix product (Ĥ ∗ A-vector) and uses only
real Hamiltonians and real wave-functions. This routine is faster, because it uses more

real arithmetic, but works only for simple Hamiltonians (only real operators).

The SPF were propagated with the Runge-Kunta integrator to eighth order (RK8) for

relaxation calculations in imaginary time.

A more detailed description of integration schemes can be found in [32, 33].
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1.9 Statistical thermodynamics

Thermal initial conditions ψT (0) can be simulated by the superposition wave function in

Eq. (41):

ψT(0) =
∑

j

cjΦj (41)

where φj are eigenfunctions at energy Ej and cj =
√

Pj expi∝j , is the Boltzmann popula-

tion of level j at the temperature T .

Pi =
gie

E1−Ei
kBT

∑
gie

E1−Ei
kBT

(42)

where gi is the degeneracy, kB is the Boltzmann constant. 0 ≤∝j≤ 2π is generated ran-

domly (with the BoltzmannCoeff.c routine, see Appendix B). The Boltzmann population

of each level j at the temperature T is calculated with BoltzmannWeight.c routine (see

Appendix A).



Chapter 2

Details on the potential energy

surfaces and calculation grids for

hydrogen on palladium

In this chapter, we present a brief introduction to the the plane (111) in the unit cell of

Pd where this study is performed, a brief overview of the methods used to develop the

PES of H2/Pd(111) and H2/Pd(111) and calculation grids.

2.1 Lattice geometry analysis

Metallic solids have periodic arrays of atoms which form a crystal lattice. Normally the

structure of solids are described by the simplest repeating unit in a crystal, the so-called

unit cells. Depending on the crystallization of the atoms, crystal structures, are named

according to the Bravais lattice classification. In the Pd and Cu crystals, for example,

atoms crystallize in the face-centered cubic lattice (fcc). Fig. 4 shows the unit cell of a

face-centered cubic lattice. It shows the lattice planes and their orientation with respect

to the unit cell using the Miller indices which are the inverse of cut segments of certain

lengths on the crystallographic axes in the plane used to define the orientation [44]. In

this figure, the plane (111) in the unit cell of Pd is represented by an equilateral triangle;

29
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the length a is the lattice constant. The distance between the atoms 5 and 3 is d = a√
2
.

This is the distance between nearest neighbours. The constant a for Pd is 389 pm [45].

3
h

2
h

6
h = 6h

d
2

1

2

3

10

4
8 14

11

7

5

6

9

7

4

35

2

6

2

2 4

7

5 63

12 13

a

h

h
6

h

= 2h

d

Figure 4 – Plane (111) of face-centered cubic lattice for palladium. The drawing on

the right hand side shows the lengths d and hk = k.h, where, d = a√
2
= 275.114 pm,

h = d
2
√

3
= a

2
√

6
= 79.419 pm.

The detail of Fig. 4 brings up a basic equilateral triangular pattern of maximum com-

pactness. The side of the triangle is 2d = a
√
2. Looking at the triangle formed by the

atoms 5, 2, 7, 4, 6 and 3, one sees that:

q =
d

2
h

q
= tan 300 =

1
2
2√
3
=

1√
3

⇒ h =
1√
3
q =

d

2
√
3

(43)

h2

2q
= tan 300

⇒ h2 =
d√
3
= 2h (44)

h3 =
√

d2 − q2

= d

√

1− 1
4

=
d
√
3

2
= 3h (45)
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Figure 5 – Section showing of atoms in the plane (101) (left) and adsorption sites (right) ;

in the hollow site : B, a Pd atom will follow in the next lowest plane (plane 2), this is the

so-called "hcp" site (hexagonal close-packed); in the hollow site C, a Pd atom follows in

plane 3, only, this is the so-called "fcc" site (face centered cubic); when a hydrogen atom

is on a Pd atom, it occupies a so-called "top" site, (site A in this figure).

This motif is representative of all parallel planes of the zone named (111). To calculate

the distance between these planes, we look at a section of the characteristic cube in the

zone (101), Fig. 5. This plane contains the axis of the area (111) which passes through

the atoms 1 and 14 in the Fig. 4. The planes orthogonal to this axis are also indicated

by lines. They contain :

• atom 1 (plane 4)

• atoms 2 and 6 (plane 3)

• atoms 8 and 13 (plane 2)

• atom 14 (plane 1)
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The distance between the planes is u = w =
√

6
3
d =

√
3

3
a. To demonstrate this, we set (see

Figure 5) :

cosα =
u

d
=

2√
6
d (46)

u =
2√
6
d =

√
6
3
d =

√
3
3
a (47)

w =
√
6− 2u =

√
6d− 2

√
6
3
d

=

√
6
3
d

= u (48)

2.2 H/Pd(111)

The PES that describes the dissociative adsorption of H2 on Pd(111) [1,27,28] was written

in FORTRAN 90. In this thesis, it was modified to study the diffusion of one hydrogen

atom and also adapted to such implement in the MCTDH program [33]. In Appendix

C the some lines of this routine is shown, as well as additional subroutines written to

implement the code in the MCTDH program. All additional routines and modified parts

of original code are duly indicated in Appendix C. The fifth line indicates the number of

hydrogen atoms considered, (nH = 2). We modified it to nH = 1 to study the diffusion of

just one hydrogen atom. This is the only change made in the program to adapt it from

the description of the H2/Pd(111) system to that of the H/Pd(111) system. The supercell

used in the development of the PES (see below) consists of a slab of five Pd layers with

a (10× 10) Pd(111) surface cell and a vacuum space corresponding to five Pd layers [27].

In Appendix E a brief overview of the Density Functional Theory used to develop this

PES is presented.
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2.2.1 Analytical representation of the PES for H2/Pd(111) and

H/Pd(111)

The PES for the systems studied in this thesis were represented analytically by Dong [1,

27]. The analytical "reactive force field" potential used for constructing this PES was ini-

tially developed by Brenner [46] and parametrized to describe the dissociative adsorption

of H2 on Pd(111) by Dong et al [1, 26–28]. The subroutine H2/Pd(111) was modified to

describe the adsorption of one hydrogen atom on Pd(111) as described above.

In a very general way, the reactive force fields (RFF) represent the potential energy of a

system as

E = Enr + Er (49)

where Er are RFF contribution and Enr represents the long range interaction. The energy

of system is described by RFF and it is decomposed into a repulsive energy (Erep and a

bonding energy (Ebond)

Er = Erep + Ebond (50)

In subroutine H2/Pd(111) the RFF used is called reactive bond order (REBO) potential

and it is given by

Er =
n∑

α=1

n∑

β=1,β≥α

Nα∑

i=1

Nβ∑

j=1 (j>i if α=β)

[V R
αβ(r

αβ
ij )− b̄αβ

ij hαβ(r
αβ
ij )] (51)

The molecules are denoted by Greek letters, n is the number of molecules, Nα and Nβ are

the number of atoms of species α and β, rαβ
ij = |rα

i − rβ
j | is the distance between atom i of

molecule α and atom j of molecule β, V R
αβ(r

αβ
ij ) and hαβ(r

αβ
ij ) are the so called repulsive

and hopping integral, respectively, which are approximated by
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V R
αβ(r

αβ
ij ) = Aαβfαβ(r

αβ
ij )

(

1 +
Bαβ

rijαβ

)

e−σαβrαβ
ij (52)

hαβ(r
αβ
ij ) = Cαβfαβ(r

αβ
ij )e

−ωαβrαβ
ij (53)

where Aαβ, Bαβ , Cαβ, σαβandωαβ are parameters to be determined by fitting. The potential

is cut off beyond some distance and the cut off function used in this analytic representation

is given by

fαβ(rij =







1 rαβ
ij ≤ rαβ

s1

1
2
{1 + cos[π(rαβ

ij − rαβ
s1 )/(r

αβ
s2 − rαβ

s1 )]} rαβ
s1 < rαβ

ij ≤ rαβ
s2

0 rαβ
ij > rαβ

s2

(54)

where rαβ
s1 is the starting cut off distance from which the potential is attenuated gradually

and rαβ
s2 is the cut off distance beyond which there is no interaction.

b̄αβ
ij is the symmetrized bond order term that describes the effect of chemical environment

on the bonding strength between the ith atom of species α and the jth atom of species β,

b̄αβ
ij =

1
2
(bαβ

ij + bβα
ji ) (55)

where

bαβ
ij =



1 +
n∑

γ=1

Nγ
∑

k=1, (k 6=i if γ=α; k 6=j, ifγ=β)

fαβ(r
αβ
ij )gαβγ(cos θijk)e

−λαβγ(rαγ

ik
−rαβ

ij )





1

2

(56)

with θijk the bond angle between the bonds ij and ik and gαβγ(cos θijk) is described by a

polynomial

gαβγ(y) = aαβγ
0 + aαβγ

1 (1 + y) + aαβγ
2 (1 + y)2 + aαβγ

3 (1 + y)3 (57)
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For the H2 − Pd system, there are three types of interactions, i.e., Pd − Pd, Pd − H and

H− H, which leads to fifteen parameters in Eqs. (52) and (53). Moreover, there are five

types of three-body terms, i.e., Pd − Pd − Pd, Pd − Pd − H, H− Pd −H, H− H− Pd

and Pd −H− Pd, which lead to twenty parameters in Eq. (57) and two parameters for

λαβγ (one for Pd − Pd − Pd and one for the other four types). Hence, there are in total

37 parameters for REBO potentials.

The reactive force field alone, i.e., Er, is not capable of describing accurately the long

range adsorbate-surface interaction, e.g., beyond a distance of 400 pm to the surface. The

long range interaction is represented by Enr (Eq. (49)). Since the surface corrugation

effect is negligible when the adsorbate is far from the surface, the long range interaction

can be described by a simple potential which is only function of the distance between the

adsorbate’s center of mass and the surface, Z, i.e.,

Enr = fL(Z)
(

c0 − c1

Z2

)

(58)

where c0 and c1 are two parameters to be determined by fitting and fL(Z) is a rounded

step function which is given by

fL(Z) =







0 Z ≤ Z1

1
2
{1− cos[π(Z − Z1)/(Z2 − Z1)]} Z1 < Z ≤ Z2

1 Z > Z2

(59)

with Z1 = 350 pm and Z2 = 450 pm. When the surface atoms are allowed to move, the

coordinate Z in Eqs. (58) and (59) is defined with respect to the uppermost surface atom.

The 37 parameters for REBO potential used for constructing the PES of H2/Pd(111) are

found in [1], Tab. 2, page 4.
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2.2.2 Analysis of the PES for H/Pd(111)

A set of Cartesian coordinates chosen to describe the position of the hydrogen atom on the

(111) surface is shown in Fig. 6a where xc and yc are the coordinates of H that describe the

movement lateral to the substrate, the "frustrated translation" and zc defines the distance

of hydrogen from the plan formed by the first layer of frozen Pd atoms. Fig. 6b shows

the possible adsorption sites of hydrogen on Pd(111) for an elementary unit cell where

the intervals in xc are −d
2
and d

2
and yc are −2h and 2h.

��

��

��

(a) Coordinate system for diffusion of H on a sur-

face. In the schema, xc and yc are the coordinates

of H on the substrate and zc defines the distance

of the hydrogen from the surface of Pd.

"fcc"

"hcp"

"bridge"

"top"

2

c

d d 

x

y

c

2
-

2h

-2h

h

-h

(b) Elementary unit cell of Pd(111) and the

possible adsorption sites.

Figure 6 – (a) Coordinate of system for diffusion of hydrogen on Pd(111) and (b) elemen-

tary unit cell and the possible adsorption sites (d = 275.114 pm, h = d
2
√

3
= 79.419 pm).

The one-dimensional section of the PES along the reaction coordinate z = zc when the

atom of H is at fcc site (Fig. 7) shows two energy wells for z < 0. This PES is not

developed to study the absorption of atoms therefore this results is not expected to be

quantitatively exact but it corresponds qualitatively well to the PES discussed in [47–49].

So, to perform dynamical calculations we choose a limited range of values for zc where

the atom of H is adsorbed near the lowest well, see Fig. 7.
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Figure 7 – One-dimensional section of the PES along zc when x is d

3
and y is −d

3
( d = a

√
2

2
,

a = 389 pm is the Pd crystal parameter [45]). The range of values for zc chosen to perform

dynamical calculations is from 20 pm to 170 pm.

For convenience, the lowest well gives the zero reference energy value. The output of the

REBO routine delivers -27687 hc cm−1 for this energy, which is the theoretical value of the

energy released by the adsorption of a single H-atom on the Pd surface at its most stable

adsorption site (electronic energy difference). From a simple thermodynamical cycle, one

may estimate an experimental value ranging between -23200 and -22700 hc cm−1 for this

energy (see Appendix D). It seems that the theoretical value obtained from the REBO

routine is exaggerated. However the absolute value of the adsorption energy is not relevant

for the work carried out in this thesis, and we will not consider it further.

For this set of Cartesian coordinates, the minima on the PES and the nth order saddle

point (nth) of adsorption sites (Fig. 6b) were calculated by the algorithm described in [4],

i.e. by searching those points whose the gradient of the PES are zero. The minima and

the saddle points were distinguished via frequency calculations. For the "bridge" and "top"

sites were found imaginary frequencies (Tab. 2). The saddle points are of order 1 and

2. For the adsorption "fcc" and "hcp" sites all frequencies are real (Tab. 3) and these

adsorption sites are global minima (Tab. 1).
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The difference between the adsorption "fcc" and "hcp" sites is ∼ 154 hc cm−1 . The first

energy barrier or transition structure, has one imaginary frequency (Tab. 2) and it is

located at ∼ 1140 hc cm−1 above the "fcc" site ("bridge" site in Fig 6b. The second

barrier is located at the "top" site, it has two imaginary frequencies (Tab. 2) and it is

∼ 5515 hc cm−1 above the "fcc" site.

Tab. 1 gives the values of Cartesian coordinates for some stationary points, the energies

and the n order saddle point (n) of adsorption sites.

Table 1 – Cartesian coordinates, energies and nth order saddle point (nth) of adsorption

sites.

sites xc / d yc zc / pm V / hc cm−1 E t
ZP / hc cm−1 n

fcc 1
2

−h 90.8 0 1273.9 0

hcp 1
2

h 90.1 153.4 1307.5 0

bridge 1
2

0 104.3 1139.1 1158.0 1

top 0 0 149.5 5515.1 1203.0 2

d = 275.114 pm, h = d

2
√

3
= 79.419 pm, tharmonic ZPE

Table 2 – Vibrational wavenumbers (in cm−1 ) of hydrogen, deuterium and tritium on

Pd(111) obtained in the harmonic approximation [4] for the "bridge" and "top" sites.

Negative values indicate imaginary wavenumbers.

sites H/Pd(111) D/Pd(111) T/Pd(111)

-364.7 -258.0 -210.8

bridge 1092.8 773.0 631.7

1224.4 866.1 707.8

-552.8 -296.1 -242.0

top -552.8 -296.1 -242.0

2405.5 1505.6 1230.3
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It is noted that the vibrational wavenumbers calculated in the harmonic approxima-

tion [4] are in qualitatively good agreement with the experimental results [22] and the

theoretical results [49]. The vibrational wavenumber calculated in Tab. 3 overestimates

the anharmonic result [49], indicating that the system H/Pd(111) contains an important

anharmonicity.

Table 3 – Vibrational wavenumbers (in cm−1 ) of hydrogen on Pd(111) obtained in the

harmonic approximation [4]. In reference [22] the vibrational wavenumber were obtained

from High Resolution Energy Electron Loss Spectroscopy. In reference [49] the vibrational

wavenumber were obtained from anharmonic calculations.

assignment Experimental results [22] Theoretical results [49] This work

0fcc 0 0 0

0hcp 288.3 153.4

νp,fcc 774 717.4 786.0

νp,hcp 928.2 952.0

νz,fcc 1016 922.4 975.5

νz,hcp 1117.7 1172.1

Table 4 – Overview: Vibrational wavenumbers (in cm−1 ) of hydrogen, deuterium and

tritium atoms on Pd(111) obtained in the harmonic approximation [4].

assignment H/Pd(111) D/Pd(111) T/Pd(111)

0fcc 0 0 0

0hcp 153.4 153.4 153.4

νp,fcc 786.0 556.0 454.4

νp,hcp 952.0 717.9 614.7

νz,fcc 975.5 690.2 564.0

νz,hcp 1172.1 874.0 742.3
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The one-dimensional section of the PES along the reaction coordinate yc (Fig.8) shows two

energy wells ("fcc" and "hcp" sites) separated by a barrier Ebridge = 1139 hc cm−1 ("bridge"

site). One observes that when the zero point energy (2D-ZPE) in the coordinates other

than the coordinate shown in the section is added (see Fig. 8 in dashed line) the thus

obtained energy barrier increases from 1139 to 1417 hc cm−1 (=(2298-881)/hc cm−1 ). The

zero point energy (2D-ZPE) was calculated in the harmonic approximation ( EZP

hc cm−1 =
∑

i
1
2
ν̌i).
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Figure 8 – One-dimensional section of the PES along yc when xc is d

2
( d = a

√
2

2
, a = 389 pm

is the Pd crystal parameter [45]) and zc is 92.4 pm, in full line the electronic adiabatic

energy and in dashed line the electronic adiabatic energy to which the 2D-ZPE was added.

The dashed line is schematic, as calculated harmonic ZPE of all coordinates but yc are

reported here for stationary structures only.

The best set of coordinates to exploit the periodicity of the elementary cell and to describe

the position of the hydrogen atom in the PES follows skewed axes of the primitive cell.

They are shown as x and y axes in Fig. 9 form an angle α = 1200. We shall call then

also twisted coordinates, where x = xc and z = zc. The smallest possible periodically

repeatable surface cell (elementary cell) is shown in Fig. 9. This cell will be used to define

a first grid of calculations.
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Its occupation by a hydrogen atom correspond to a 50% coverage of the substrate, as the

atom can adsorb either in the "fcc" or in the "hcp" site.

����������

���	�����


�

�

��

�

�

�

�

�

�

�

��

� �

Figure 9 – Set of coordinates chosen to exploit the periodicity of the elementary cell of

Pd(111). Numbers 1 to 4 define sub-cells that will be considered later.

The harmonic zero point energies in Tab. 5 were obtained summing up the corresponding

values in Tabs. 2 and 3. The anharmonic zero point energies were obtained from the

calculations of anharmonic eingenvalues using the MCTDH code as discussed below. For

the bridge and top sites, Cartesian coordinates were used for the MCTDH calculations.

Tab. 5 also gives the values of stationary points in the twisted coordinates.

Table 5 – Twisted coordinates, energies of adsorption sites and zero point energy anhar-

monic.

sites x / d y / d z / pm V / hc cm−1 E t
ZP / hc cm−1

fcc 1
3

−1
3

90.8 0 1477.7

hcp -1
3

1
3

90.1 153.4 1513.7

bridge 1
2

0 104.3 1139.1 1144.4

top 0 0 149.5 5515.1 968.1

d= 275.114 pm, a = 389 pm [45]; tanharmonic ZPE
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2.2.3 Grid studies H/Pd(111)

The next largest periodically repeatable cells chosen for the quantum dynamics calcu-

lations are grid 2 and grid 3. The grid 2 contains 4 possible "fcc" sites and 4 possible

"hcp" sites (represents a 12.5 % coverage of the substrate, Fig. 10a) and grid 3 contains

9 possible "fcc" sites and 9 possible "hcp" sites (represents a 5.6 % coverage of substrate,

Fig. 10b).

�

�
�

�

�

�

(a) Grid 2 with 12.5 % coverage of substrate.

�

��
�

�

�

��

�

�

��

�

�

(b) Grid 3 with 5.6 % coverage of substrate.

Figure 10 – Next largest periodically repeatable cell: grid 2 (a) and grid 3 (b).
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2.2.4 Potential representation using POTFIT

The product representations (see Eqs. (15) or (16)), for the (3D) and (6D) systems,

respectively, do not in general guarantee the optimal solution (especially in the case

of more than two dimensions) [36]. The representation of the potential of H/Pd(111)

by a linear combination of products of one-dimensional functions using the POTFIT

algorithm (discussed in Methods) for the grid 1, 2 and 3 shows a good approximation

because the L 2-error is small, showing that the V appr is very close to the optimum. The

representation of V (x, y, z) as a linear combination of products (see that chapter Methods)

was made without choosing any relevant region, i.e, all grid points are considered as

relevant. The L 2-error for grid 1 is 0.043 hc cm−1 , for grid 2 is 0.025 hc cm−1 and for

grid 3 is 0.022 hc cm−1 . The total time duration to perform the product representation

with the POTFIT algorithm is about 1 hour for grid 1 and about 2 hours for grid 2 and

3.

The contour lines of the potential representations for each grid studied is given in Fig. 11.

One sees for example in Fig. 11a (grid 1), the two more stables adsorption sites, "fcc" and

"hcp", located at 50 and 300 hc cm−1 , respectively. The barrier energy is located at ≃
1200 hc cm−1 . In Figs. 11b and 11c one sees the 4 adsorption sites "fcc" and "hcp" for

the grid 2 and 9 adsorption "fcc" and "hcp" sites for the grid 3, showing the difference of

energy between the sites and the high symmetry when one increases the size of unit cells.

The parameters for this calculation are shown in Tab. 6.
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(a) Contour lines of PES for grid 1.
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(b) Contour lines of PES for grid 2.
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(c) Contour lines of PES for grid 3.

Figure 11 – Contour line representation of the potential and the adsorption sites the grid

1 (a), grid 2 (b) and grid 3 (c). The values of contour lines are in units of hc cm−1 ,

zc = 90.8 pm in all sections.
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Table 6 – Calculation parameters. The DVR used are sine DVR (SIN) and Exponential

(plane-wave) DVR. Masses used in the calculations are m(1H) = 1.007825 Da, m(2H) =

2.014101 Da, m(3H) = 3.016049 Da. CMF is the "constant mean field" integration scheme

parameters, RRDAV is the Davidson diagonaliser, RK8 is the Runge-Kutta integration

scheme to 8th order.

grid parameters

coordinate DVR DVR-parameters Nκ
a) Mκ

a)

(κ)

x or y EXP x(min) = y(min) = −jg × d/2, 61

x(max) = y(max) = jg × d/2 (b)

(1× 1) grid: jg = 1 25

(2× 2) grid: jg = 2 40

(3× 3) grid: jg = 3 58

z SIN z(min) = 20 pm, z(max) = 170 pm 31 11

integration parameters

integration or parameters

extrapolation scheme

CMF initial time interval 1.0 fs; accuracy parameter 10−3

RRDAV/A maximal order 5000; accuracy 10−9; eps_inv = 10−9

RK8/spf accuracy 10−8; initial step size 0.1 fs

“potfit” parameters

natural potentials z is “contracted”, y = y = 50

y = y = 50 for (1× 1)-grid

y = y = 55 for (2× 2)-grid

y = y = 58 for (3× 3)-grid

separable weights x, y, z: weight type 0

correlated weights no correlation

fit characteristics weighted rmsc) smaller than 0.047 hc cm−1 (all points)

a) Nκ is the number of primitive functions of coordinate κ, Mκ is the number of single

particle functions.

b) d = 275.114 pm is the distance between nearest neighbour palladium atoms [45].

c) root mean square deviation



Chapter 3

Results for H/Pd(111) and isotopes:

Vibrational eigenstates and time

evolutions

In this Chapter, results for the vibrational spectrum and time evolution of initially local-

ized wave packets are presented and discussed. The results allow us to have an unprece-

dented understanding of the diffusion dynamics.

3.1 Eigenstates of H,D and T on Pd(111)

3.1.1 Eigenstates of H on Pd(111)

Eigenenergies and eigenvectors are calculated with the improved block relaxation method

(discussed in chapter Methods). All calculation parameters used for the grids studies are

summarized in Tab. 6.

46
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Fig. 10a for example, shows the grid 2. It is noted that when the hydrogen atom is located

at "fcc" site (the blue circle), there are three channels of diffusion, i.e., the hydrogen atom

can move to three "hcp" sites adjacent and equivalent (the red circles). Fig. 12 shows

the three channels of diffusion. One can therefore describe the local vibrational structure

arising at each equilibrium adsorption site with the aid of the C3v point group, similarly

to the point group of NH3, where it is assumed to have a pyramidal molecular geometry.

Figure 12 – Model for the representation of three channels of diffusion that look like the

pyramidal molecular geometry of NH3. The blue circle represents to "fcc" site and the

three circles in red represent to "hcp" site.

A brief recall of group theory is given in the Appendix F. We shall use C3v symmetry

labels to characterize states that are localized in the three-fold symmetry sites.

Tab. 7 shows the eigenstates when the hydrogen atom is at "fcc" and "hcp" sites for the

grids 1, 2 and 3. The parallel modes are indicated 2
A
and 2

B
and the perpendicular

modes are indicated 1
A
and 1

B
, where the subscripts A and B mean "fcc" and "hcp" sites,

respectively.
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Table 7 – Band edges ν̃/cm−1 , band widths ∆ν̃/cm−1 and band degeneracies g for

H/Pd(111).

band label modes grid 1 grid 2 grid 3

band (g) band (g) band (g)

edge width width

1 A1 0A 0.0 (1) 0.0 (4) 0.0 (9)

2 A1 0B 189.4 (1) 0.0 (4) 0.0 (9)

3 E 21
A

743.6 (2) 0.5 (8) 0.5 (18)

4 E 21
B

920.2 (2) 4.1 (8) 4.6 (18)

5 A1 11
A
+22

A
1047.6 (1) 11.0 (4) 12.4 (9)

6 A1 11
A
+11

B
+22

B
1200.1 (1) 10.5 (4) 11.9 (9)

7 E 22
A
+22

B
1321.8 (2) 18.3 (8) 19.6 (18)

8 A1 11
A
+11

B
+22

A
1336.8 (1) 21.3 (4) 22.9 (9)

9 A1 11
B
+22

A
+22

B
1535.9 (1) 9.7 (4) 11.5 (9)

10 E 22
A
+22

B
1572.8 (2) 4.1 (8) 4.5 (18)

...
...

...
...

...

22 A1 12
A
+23

A
2188.7 (1) 1.1 (4) 1.5 (9)

...
...

...
...

...

27 A1 12
B
+23

B
2342.8 (1) 0.5 (4) 0.8 (9)

...
...

...
...

...
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The vibrational spectrum of H on Pd(111) obtained by high resolution electron energy

loss spectroscopy (HREELS) shows two important peaks, one at 96 meV (774 hc cm−1 )

and the other at 126 meV (1016 hc cm−1 ) [22]. Saalfrank and Tremblay [49] calculated

fundamental vibrational modes for the system H/Pd(111) and obtained 717.4 cm−1 and

922.4 cm−1 . They related the first mode to the parallel vibration at the site "fcc" (we

call this mode 2
A
) and the second mode as perpendicular vibration at the site "fcc" (we

call this mode 1
A
). They also calculated the vibrational modes for parallel and perpen-

dicular vibrations at the "hcp" site (2
B
and 1

B
, respectively). The fundamental spectral

transitions for these modes can not be distinguished experimentally because of the low

resolution of the experimental technique [22]. The vibrational modes presented in this

work, obtained by MCTDH [30], in particular by improved relaxation in block [33, 41],

are 743.6 and 1047.6 cm−1 at the site "fcc" and 920.2 and 1200.2 cm−1 at the site "hcp"

for the parallel and perpendicular modes respectively, (see in Tab. 7). These theoretical

results are in good agreement with the experimental spectrum [22] and slightly better

than those obtained in the reference [49]. This difference of theoretical resultats of [49]

can be atributed to the low quality of PES used [48].

An important finding of this work is the formation of bands when one decreases the

coverage degree of the substrate, i.e., increasing the number of void sites of adsorption

(see Fig. 10). For grid 1, for example, one expects a degeneracy (g) equal to 2 for the

parallel mode at each one of the A or B sites, 2
A
or 2

B
, the symmetry label of which is E.

For grid 2, there are 4 "fcc" and "hcp" sites (see Fig. 10a), a degeneracy (g) equal to 8 for

each site is expected for mode 2, see the fifth column of the Tab. 7. For grid 3, there are

9 "fcc" and "hcp" sites (see Fig. 10b), a degeneracy (g) equal to 18 for each site could be

reported in the sixth column of the Tab. 7. However the degeneracy (g) for the grids 2 and

3 is broken (see Tab. 7) as the levels approach the electronic barrier (∼ 1140 hc cm−1 ,

see Fig. (5)). The splitting of levels is due to the tunnel effect and is at the origin of

the formation of bands. The band width is given by the maximal lift of degeneracy; it is

calculated by the difference between the minimal and maximal eigenvalues of states that

would otherwise be degenerate. The minimal eigenstate for the grids 2 and 3 corresponds

normally to the band edge given by the minimal eigenstates obtained with grid 1.
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Analysing the reduced probability density is very useful to understand the nature of each

eigenstate and that the perpendicular vibration modes are not pure modes. For example,

the Fig. 13 shows the reduced probability density for the ground states (0A and 0B) for

the "fcc" and "hcp" sites, the symmetry label of which is A1. One sees that the nature of

the reduced probability density for the ground states in the "fcc" (0A) and "hcp" (0B) sites

are highly localized.
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Figure 13 – Reduced probability density for the ground states 0A and 0B for the "fcc" and

"hcp" sites, respectively, in the xcyc plan.

Fig. 14 shows the reduced probability density for the parallel modes. It is expected a

degeneracy of order 2, because there is a mode along x or y. It is possible to identify the

vibrational direction parallel along x or y, by looking at the coordinate where the node of

the probability distribution is localized. One observes also that the reduced probability

density for the vibrational parallel modes remain localized at the "fcc" or "hcp" sites.

The fifth and sixth bands, which might naively be attributed to the perpendicular vi-

bration modes (1047.6 and 1200.2 hc cm−1 , Tab. 7) are in fact spread along the afore-

mentioned channels localized at "fcc" and "hcp" sites. These modes are the result of a

strong anharmonic interaction between 4 modes localized in the two sites : a mode with

1 quantum of perpendicular vibrational energy (11
A
and 11

B
) and a mode with 2 quanta of

parallel vibration energy (22
A
and 22

B
).



Results for H/Pd(111) and isotopes: Vibrational eigenstates and time evolutions 51

21
A
(Ex)

��/pm

� �
/p

m

-200 -150 -100 -50 0 50 100 150 200

-100

-50

0

50

100

21
A
(Ey)

��/pm

� �
/p

m

-200 -150 -100 -50 0 50 100 150 200

-100

-50

0

50

100

21
B
(Ex)

��/pm

� �
/p

m

-200 -150 -100 -50 0 50 100 150 200

-100

-50

0

50

100

21
B
(Ey)

��/pm

� �
/p

m

-200 -150 -100 -50 0 50 100 150 200

-100

-50

0

50

100

Figure 14 – Reduced probability density for the third and forth level that represent parallel

modes with 1 quantum of energy (21
B
and 21

B
) in "fcc" and "hcp" sites, respectively, in the

xcyc plan.

Fig. 15 shows the reduced probability density in all the plans for the fifth level

(1047.6 hc cm−1 ). Fig. 15a shows the reduced probability density in xcyc plan. One

observes that in this plan the probability density is localized at the "fcc" site (A) while

fanning out importantly in the xcyc plan. The form of this function must correspond to

the parallel mode at "fcc" site. Due to the symmetry of the staggering, the function must

be of the A1 type. The first possible parallel vibration of A1 type is the overtone 22
A.

Figs. 15b and 15c show the reduced probability density in the xz and yz plans, respectively.

In these plans one observes that the probability density is localized at "fcc" site, where x

is positive and y is negative. A node in z, corresponding to the perpendicular mode, can

be clearly seen. Thus, the perpendicular vibrational mode (1047.6 hc cm−1 ) is a mixture

of two modes localized at the "fcc" site (A) : a perpendicular vibrational mode with 1

quantum of energy (11
A
) and a parallel vibrational mode with 2 quanta of energy (22

A
).
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(a) Reduced probability density in xcyc plan.
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 15 – Reduced probability density for the fifth state at 1047.6 hc cm−1 assigned as

11
A
+ 22

A
.
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Fig. 16 shows the reduced probability density in all the plans for the sixth state

(1200.2 hc cm−1 ). One observes in the Fig. 16a that the reduced probability density

is delocalized in the xcyc plan. Focusing at the "fcc" site, (xc positive and yc negative)

one sees that the shape of the probability of density is more localized, no unfolding or

fanning out. However, in the "hcp" site, (xc negative and yc positive) the shape of the

probability density is different, there is a fanning out as already seen above for the state

at 1046.4 hc cm−1 .

Figs. 16b and 16c show the reduced probability density in the xz and yz plans. One

notes an important delocalization. In the region of positive xc and negative yc ("fcc" site),

one can recognize the formation of a node in z, corresponding to the perpendicular mode

(11
A
). For xc negative and yc positive ("hcp" site), it is noted a perfectly formed node in

z is noted, corresponding to the perpendicular mode (11
B
). Combining with Fig. 16a, one

can assign this reduced probability density as a mixture of : a perpendicular vibrational

mode with 1 quantum of energy (11
A
) in "fcc" site, a perpendicular vibrational mode with

1 quantum of energy (11
B
) in "hcp" site and a parallel vibrational mode with 2 quanta of

energy (22
A
) in "hcp" site.

Fig. 17 shows the reduced probability density in all the plans for the sixth state

(1336.8 hc cm−1 ). The reduced probability density in the xcyc plan, Fig. 17a, shows that

the two sites are similar. Again an important fanning out along the 3 channels at the

"fcc" site (xc positive and yc negative) is noticed. One assigns this as a parallel vibration

with 2 quanta of energy (22
A
). In the "hcp" site, the probability density is more localized.

This is hence a perpendicular vibration with 1 quantum of energy (11
B
).

Figs. 16b and 16c show the reduced probability density in the xz and yz plans. An

important delocalization in the two sites is noticed. Additionally, for the "fcc" site (xc

positive and yc negative) one recognizes a well formed node in z, corresponding to the

perpendicular vibration with 1 quantum of energy (11
A
). This is also seen at the "hcp" site

(xc negative and yc positive) a node in z, corresponding to the perpendicular vibration

with 1 quantum of energy (11
B
).
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(a) Reduced probability density in xcyc plan.
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 16 – Reduced probability density for the sixth level (1200.1 hc cm−1 ), assigned as

11
A
+ 11

B
+ 22

B
; symmetry label A1.



Results for H/Pd(111) and isotopes: Vibrational eigenstates and time evolutions 55

��/pm

�
�/

p
m

-200 -150 -100 -50 0 50 100 150 200

-100

-50

0

50

100

(a) Reduced probability density in xcyc plan.
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 17 – Reduced probability density for the eighth level (1336.8 hc cm−1 ), assigned

as 11
A
+ 11

B
+ 22

A
; symmetry label A1.
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Fig. 18 shows the reduced probability density for the ninth state at 1535.9 hc cm−1 .

Inspection of the shape of the probability density for at the two sites in the xcyc plan

(Fig. 18a), shows that the state can be assigned as a parallel vibration with 2 quanta of

energy (22
A
), a parallel vibration with 2 quanta of energy (22

B
). Looking at the Figs. 18b

and 18c one recognizes at the "hcp" site a node in z. However, for the "fcc" site, there is

no node in z.

The mixed modes 11
A
+ 22

A
, 11

A
+ 11

B
+ 22

B
, 11

A
+ 11

B
+ 22

A
and 11

B
+ 22

A
+ 22

B
belong all to the

same symmetry species A1. The mixing of the pure modes is due to anharmonic coupling

terms in the exact Hamiltonian operator. This type of interaction between vibrational

modes of the same symmetry and similar energies is known as a Fermi resonance [50,51].

The twenty-second and twenty-seventh levels (2188.7 and 2342.8 hc cm−1 ) also correspond

to perpendicular vibrations and it is also noticed that these modes are not localized, rather

they are mixtures of site localized modes. Fig. 19a shows that the reduced probability

density in the xcyc plan is localized at "fcc" site but it fans out considerably, which is

interpreted as a parallel vibration mode with 3 quanta of energy (23
A
). Figs. 19b and 19c

show 2 nodes in z. It is noticed that the probability density is localized at "fcc" site,

thus one interprets it as a perpendicular vibration mode with 2 quanta of energy 12
A
. The

twenty-sixth state (2342.8 hc cm−1 ) is composed of a parallel vibrational mode with 3

quanta of energy localized at "hcp" (23
B
) and a perpendicular vibrational mode with 2

quanta of energy localized at "hcp" site 12
B
.
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(a) Reduced probability density in xcyc plan.
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 18 – Reduced probability density for the ninth level (1535.9 hc cm−1 ), assigned as

11
B
+ 22

A
+ 22

B
, its label of symmetry is A1.
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(a) Reduced probability density in xcyc plan.
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 19 – Reduced probability density for the twenty second level (2188.7 hc cm−1 ),

assigned as 12
A
+ 23

A
, its label of symmetry is A1.
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(a) Reduced probability density in xcyc plan.
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 20 – Reduced probability density for the twenty seventh level (2342.8 hc cm−1 ),

assigned as 12
B
+ 23

B
, its label of symmetry is A1.
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In summary, each site has a local C3v symmetry, such that per site two vibrational modes

parallel to the substrate and one mode perpendicular to it can be expected. Per site type

there will hence be 8 parallel and 4 perpendicular vibrational states arranged in levels

of quasi-isoenergetic states. Tunneling may split these levels. Here, we summarize the

results for the 2× 2 surface cell grid, which we also call grid 2. The present calculations

yield that the ground state level remains four-fold degenerate, at least within the accuracy

defined by the number of digits reported in Tab. 8 below, both for the "fcc" and the "hcp"

site, while the vibrationally excited levels split into two blocks, as indicated in this table.

Table 8 – Wavenumbers of the fundamental transitions for H/Pd(111) in cm−1 .

modes site theory exp [22]

this worka ref. [49]

parallel fcc 743.6 (5) 744.1 (3) 717.4 774.3

hcp 726.8 (3) 730.8 (5)

perpendicular fcc 1047.6 (1) 1058.6 (3) 922.4 1016.3

hcp 1000.2 (3) 1010.8 (1)

Column "this work" in Tab. 8 reports four sets of transitions for each mode. These sets

arise from tunneling splitting of degenerate vibrationally excited levels and remaining de-

generacies are indicated by the numbers in parentheses. The total degeneracy of levels is

given by the product of site degeneracies arising from the (2× 2) grid (see Fig. 10a) and

the degeneracies of modes localized at each site (see text). Tunneling splits these transi-

tions as indicated (numbers in parentheses give the remaining degeneracies). In refs [49]

and [22], only one value is reported per transition. The present results for vibrational

wavenumbers are comparable to previsouly reported values. Tab. 8 reports only the fun-

damental transitions and the present work has given evidence for the occurrence of strong

anharmonic resonances in the overtone spectrum, which are include already present in

the perpendicular modes presented in the table.
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3.1.2 Eigenstates of D on Pd(111)

Normally a shift toward smaller wave numbers in the spectrum of the molecule is expected

when an atom is replaced by an isotope of larger mass. Here, the hydrogen atom 1H

(1.007825 Da) is replaced by a deuterium atom 2H (2.014101 Da) [52] and a decrease of

the eigenvalues is indeed noticed. For example, one notes the decrease in the parallel

vibrational modes (21
A
or 21

B
). The mode at 743.6 hc cm−1 (21

A
) of hydrogen changes to

561.4 hc cm−1 (21
A
) for the deuterium atom. Tab. 9 gives the eigenstates of D/Pd(111).

Table 9 – Band edges ν̃/cm−1 , band widths ∆ν̃/cm−1 and band degeneracies g for

D/Pd(111).

band label modes grid 1 grid 2

band (g) band (g)

edge width

1 A1 0A 0.0 (1) 0.0 (4)

2 A1 0B 188.8 (1) 188.8 (4)

3 E 21
A

561.4 (2) 561.4 (8)

4 E 21
B

748.5 (2) 748.5 (8)

5 A1 11
A
+ (22

A
) 785.5 (1) 785.5 (4)

6 A1 11
B
+ (22

B
) 966.2 (1) 966.2 (4)

7 A1 11
A
+ 22

A
1020.6 (1) 1020.6 (4)

8 E 22
A

1064.9 (2) 0.2 (4)

9 A1 11
B
+ 22

B
1181.6 (1) 0.6 (4)

10 E 22
A
+22

B
1215.7 (2) 3.9 (8)

...
...

...
...

22 A1 12
A
+ (22

A
) 1590.8 (1) 0.3 (4)

...
...

...
...

27 A1 12
B
+ (22

B
) 1765.3 (1) 0.6 (4)

...
...

...
...
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It is noted that the perpendicular vibrational modes (785.5 and 966.2 hc cm−1 ) are rather

localized (see Figs. 21 and 22). Furthermore, one observes that along xcyc there is fanning

out like it is noted for the H/Pd(111) (see Figs. 21a and 60a). One starts to note an im-

portant staggering along xcyc at the seventh and ninth levels (1020.6 and 1181.6 hc cm−1 )

see the Figs. 23a and 24a but it continues localized on one site. Nevertheless the per-

pendicular vibrational modes of D/Pd(111) at "fcc" and "hcp" sites are derived of modes

rather localized, (11
A
+ 22

A
) for the "fcc" site and (11

B
+ 22

B
) for the "hcp" site.

It is noted that the eighth and tenth levels consist of the parallel vibrational modes with

2 quanta of energy because they are two nodes along xcyc (Fig. 25). The eighth level

(1064.9 hc cm−1 ) is rather localized at the "fcc" site (Fig. 25) and is assigned to 22
A
. The

tenth level (1215.7 hc cm−1 ) is a mixture of parallel vibrations with 2 quanta of energy

at "fcc" and "hcp" sites, thus, it is represented as 22
A
+ 22

B
.

Figs. 26 and 27 show the reduced probability density for the twenty second

(1590.8 hc cm−1 ) and twenty sixth (1765.3 hc cm−1 ) levels. Theses modes represent the

perpendicular vibrational modes with 2 quanta of energy in the "fcc" and "hcp" sites,

respectively (Figs. 26b and 27b). It is noted that these modes are localized and that the

density of probability along xcyc do essentially not fan out. Therefore one represents these

modes as 12
A
and 12

B
(Figs. 26 and 27).
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(a) Reduced probability density in xcyc plan.
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 21 – Reduced probability density for the fifth level (785.5 hc cm−1 ) for D/Pd(111)

which can be assigned as 11
A
+ 22

A
, its label of symmetry is A1. The 22

A
component is very

faint and can be put into brackets (see Tab. 9).
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(a) Reduced probability density in xcyc plan.
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 22 – Reduced probability density for the sixth level (966.2 hc cm−1 ) for D/Pd(111)

which can be assigned as 11
B
+ 22

B
, its label of symmetry is A1. The 22

B
component is very

faint and can be put into brackets (see Tab. 9).
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 23 – Reduced probability density for the seventh level (1020.6 hc cm−1 ) for

D/Pd(111) which can be assigned as 11
A
+ 22

A
, its label of symmetry is A1(see Tab. 9).
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 24 – Reduced probability density for the ninth level (1181.6 hc cm−1 ) for

D/Pd(111) which can be assigned as 11
B
+ 22

B
, its label of symmetry is A1(see Tab. 9).
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Figure 25 – Reduced probability density for the eighth and tenth levels (1064.9 and

1215.7 hc cm−1 , respectively) that represent the vibrational parallel modes of D/Pd(111)

with 2 quanta of energy. At 1064.9 hc cm−1 the mode is localized at the "fcc" site (22
A
)

and at 1215.7 hc cm−1 the mode is delocalized on two sites (22
A
+22

B
) (see Tab. 9).
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(b) Reduced probability density in xz plan.
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(c) Reduced probability density in yz plan.

Figure 26 – Reduced probability density for the twenty second level (1590.8 hc cm−1 ) for

D/Pd(111) which can be assigned as 12
A
, its label of symmetry is A1(see Tab. 9).
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(c) Reduced probability density in yz plan.

Figure 27 – Reduced probability density for the twenty seventh level (1765.3 hc cm−1 )

for D/Pd(111) which can be assigned as 11
B
, its label of symmetry is A1.
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3.1.3 Eigenstates of T on Pd(111)

The reduced probability densities show that the modes are rather localized similar to

the findings for the modes of the deuterium atom. The eigenvalues decrease because of

the isotope effect. Tab. 10 gives the eigenstates of T/Pd(111). The reduced probability

density for the modes of vibration of T/Pd(111) can be found in Appendix G.

Table 10 – Band edges ν̃/cm−1 , band widths ∆ν̃/cm−1 and band degeneracies g for

T/Pd(111).

band label modes grid 1 grid 2

band (g) band (g)

edge width

1 A1 0A 0.0 (1) 0.0 (4)

2 A1 0B 187.9 (1) 187.9 (4)

3 E 21
A

471.2 (2) 471.2 (8)

4 A1 11
A
+ (22

A
) 650.4 (1) 650.4 (4)

5 E 21
B

660.1 (2) 660.1 (8)

6 A1 11
B
+ (22

B
) 837.1 (1) 837.1 (4)

7 A1 11
A
+22

A
873.7 (1) 873.7 (4)

8 E 22
A

912.1 (2) 912.1 (8)

9 A1 11
B
+22

B
1049.9 (1) 0.2 (4)

10 E 22
A
+22

B
1085.7 (2) 3.3 (8)

...
...

...
...

22 A1 12
A
+ (22

A
) 1311.9 (1) 0.3 (4)

...
...

...
...

29 A1 12
B
+ (22

B
) 1490.9 (1) 2.9 (4)

...
...

...
...

The eigenvalue for the (21
A
) mode of H/Pd(111) is 743.6 hc cm−1 (Tab. 7), which is about

a factor 1.6 larger than the corresponding eigenvalue of the T/Pd(111) system from

(Tab. 10), and a factor 1.3 larger that the eigenvalue of the D/Pd(111) system from

Tab. 9. Similar ratios apply to the modes involving 11
A
. These rations are slightly smaller
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than the values
√
3 and

√
2 which might be naively expected from harmonic calculations

and the classical isotope formula. This discrepancy hints at the strong anharmonicity of

the PES.

3.2 Wave packet studies of H,D and T on Pd(111)

This section shows the results of a wave packet propagation using the MCTDH method.

Some of the wave packet propagations in this work were calculated using a Gaussian

function as an initial state, i.e., the first single particle function is a normalised Gaussian

given an initial momentum of the form f(x) = N exp(−1
4
(x − x0)/σ)2) exp(i p (x− x0)),

where x0 is the center of an initial Gaussian wave packet, p is the initial momentum of

the wave packet and σ denotes the width, N is a normalization factor. σ is defined as

the standard deviation, i.e.,
√

(〈x2〉 − 〈x〉2) [32]. The Gaussian function is centred in

coordinates of the "fcc" site, the width is 0.25 a−1
0 and p = 0 ~/a0. Here, x is a generic

coordinate that stands for any of the three coordinates of the H-atom.

3.2.1 Propagation of H on grid 1 at 〈E〉 ≃ 1518 hc cm−1

For the first wave packet propagation, the initial state is localized at the "fcc" site and

is essentially non-excited, its energy (≃ 1518 hc cm−1 ) being roughly the zero point

energy, see Fig. 28. This state remains nearly stationary, as shown in the following

snapshots. The energy of the wave packet is the quantum mechanical average energy that

is obtained from the weighted average over the energies of all eigenstates that participate

at its construction.
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Figure 28 – Schematic representation of the initial wave packet located at the "fcc" site with

an energy that equals roughly the zero point energy (∼ 1518 hc cm−1 ). The potential

lines are related to the electronic 2D-ZPE adiabatic (dashed) states (see Fig. 8 for an

explanation and discussion of the energies).

Fig. 29 shows snapshots of the wave packet evolution for this initial state. The wave

packet has sufficient energy (≃ 1518 hc cm−1 ) to overcome the classical electronic barrier

(≃ 1139 hc cm−1 ). However the wave packet remains localized at the "fcc" site because of

the important effective barrier of about 2298 hc cm−1 which arises from the variation of

the zero point energy along the path linking the two stable sites, see Fig. 28. All energies

we refer to, i.e., the energy of the wave packet and characteristic energies of the potential

are given with respect to the reference energy at the "fcc" site.

One sees that the wave packet evolves into a breathing motion with some propensity to

populate the three channels connecting the initially populated "fcc" site with the next

lying "hcp" sites.
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Figure 29 – Snapshots of the wave packet propagation as reduced probability densities in

the 2D space of coordinates along the substrate. The initial state is localized at the "fcc"

site and is essentially non-excited.
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3.2.2 Propagation of H on grid 1 at 〈E〉 ≃ 2592 hc cm−1

Now, a wave packet propagation was simulated where the perpendicular vibrational mode

located at the "fcc" site is initially excited with 1 quantum of energy vibrational perpen-

dicular to the substrate (∼ 2592 hc cm−1 ), see Fig. 30. In practice, the Gaussian function

in the z coordinate is replaced by the eigenfunction v = 1 of a harmonic oscillator centered

at the "fcc" site and having the harmonic wavenumber 975.5 cm−1 (see Tab. 3)
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Figure 30 – The centre of the initial wave packet is located at the "fcc" site: the initial

state has 1 quantum of energy in the perpendicular vibrational mode (≃ 2592 hc cm−1 ).

The initial wave packet is above the effective barrier (≃ 2591 hc cm−1 ). It is noted that

after 90 fs the hydrogen atom initially located at the "fcc" site starts to move parallelly to

the substrate, which corresponds to a lateral diffusion. In fact the initial state contains

the perpendicular vibrational mode excited, thus the hydrogen atom should initially be

moving perpendicularly to the substrate. The motion shown in Fig. 31 below can not

be explained by classical mechanics, because at the same time as the diffusion begins

to take place on the "fcc" site, the atom starts to appear on the "hcp" site which is

about 200 pm away from the first, Fig. 30. This instant delocalization is characteristic of

quantum mechanics, which allows us to say that the spreading of the atom closely follows

the rules of this microscopic mechanics. Following this simulation shows that the initial
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state is restored partially after two hundred fifty femtoseconds (250 fs) and the diffusion

starts over again. This quasi-periodicity of the motion is another feature of the quantum

dynamics. The motion would be strictly periodic if it resulted from the superposition of

two stationary states only.
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Figure 31 – Snapshots of the wave packet propagation as reduced probability densities in

the 2D space of coordinates along the substrate. The hydrogen atom is initially localized

at the "fcc" site while its perpendicular mode is excited with 1 quantum of energy (≃
2592 hc cm−1 ).
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3.2.3 Probabilities of elementary sub-cells for H/Pd(111)

The unit 1 × 1 cell or grid 1 was divided in 4 sub-cells in the form of small diamonds

(see Fig. 9). The probability (Pi(t) with i = 1, 4) to find the hydrogen atom in any of

these sub-cells as a function of time during the propagation is shown in Fig. 32. Here,

one considers the wave packet propagation with 1 quantum of energy in the perpendicular

vibrational mode. It is noted that in about 100 fs the probability to find the hydrogen

atom in the little diamond 1 (see Fig. (6)) is about 30 %. After 150 fs the probability starts

to increase again, showing the recovery of the quasi-periodic motion of this propagation.

On observes at 200 fs that P1(t) is about 70 %. After 300 fs one observes that P1(t)

decreases again until 400 fs. One observes that in the little diamonds 2 and 4 there is

a small probability to find the hydrogen atom, i.e., P2(t) ≃ P4(t) ≃ 10 %. In the little

diamond 3 (see Fig. (6)) is located the "hcp" site and one observes that P3(t) increases as

a function of time. It is noted that in about 100 fs P3(t) is about 57 %. One observes that

P3(t) decreases again after 200 fs. The quasi-periodic motion of diffusion can be observed

again because at 300 fs P3(t) increases again to decrease again after 400 fs.
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Figure 32 – Probability to find the H-atom in each of the elementary sub-cells, also called

here little diamonds, during the propagation.
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3.2.4 Propagation of H on grid 1 at 〈E〉 ≃ 3655 hc cm−1

Here a wave packet propagation is simulated where the perpendicular vibrational mode

located initially at the "fcc" site is excited with 2 quanta of energy (≃ 3655 hc cm−1 ),

i.e., well above of effective barrier, see the Fig. 33. Similarly to the study in the section

3.2.2, the initial Gaussian function in the z coordinate is replaced by the eigenfunction

ν = 2 of a harmonic oscillator centered at the "fcc" site and having the wave number 975.5

cm−1 (see Tab. 3)

�

���

����

����

�			

��		

�			

��	 �		 �	 	 �	 �		 ��	

�
�	

�

��

�

����

�
�

�

�

���

��� ���

����
���

����

����

�

���

���

Figure 33 – The centre of the initial wave packet is located at the "fcc" site with 2 quanta

of energy in the perpendicular vibrational mode (≃ 3655 hc cm−1 ).

It is noted that the lateral diffusion happens very quickly (see Fig. 34). After 25 fs, for

example, the "hcp" site is already populated. One observes an important spreading at the

"fcc" site. After 90 fs the initial state is restored, showing that this motion is again quasi-

periodic. The general form of the evolving wave packet is somewhat more complicated

than that of the wave packet shown in section 3.2.2, i.e., where the initial state involved

just 1 quantum of perpendicular vibrational motion.
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Figure 34 – Snapshots of the wave packet propagation as reduced probability densities in

the 2D space of coordinates along the substrate. The perpendicular vibrational mode is

initially localized at the "fcc" site and is excited with 2 quanta of energy (≃ 3655 hc cm−1 ).

3.2.5 Propagation of H on grid 2 at 〈E〉 ≃ 2586 hc cm−1

A propagation with 1 quantum of perpendicular vibrational energy (≃ 2586 hc cm−1 )

was calculated for grid 2 (see Fig. 10a) which is a (2× 2) surface cell grid. One observes

that initially the H-atom located at the "fcc" site starts to spread to the 3 closest lying

"hcp" sites (see Fig. 35). After 90 fs one observes a local spreading at the "fcc" site

while considerably populating the bridge saddle points between the "fcc" and "hcp" sites,
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and simultaneously the 3 "hcp" sites become populated. After 150 fs the "fcc" site is

almost completely recovered, quite at variance with the previously reported evolution on

grid 1 (section 3.2.2), where the recovery happens after about 250 fs, only. After 250 fs

one observes that all sites are populated (see Fig.10a) but the initially populated "fcc"

site remains the most populated, followed by its nearest "hcp" sites, which, in turn, are

followed by their next closest "fcc" sites, and so forth. After 500 fs one observes that the

4 "fcc" sites are more populated that the "hcp" sites. The sequence of snapshots show,

however, that their occupation follows the previous occupation of "hcp" sites. Hence, the

wave packet motion reminds us of some features of a classical jump mechanism.
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Figure 35 – Snapshots of the wave packet propagation in the (2 × 2) surface cell (grid

2) as reduced probability densities in the 2D space of coordinates along the substrate.

The perpendicular vibrational mode is initially excited with 1 quantum of energy (≃
2586 hc cm−1 ).
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3.2.6 Propagation of H on grid 3 at 〈E〉 ≃ 2586 hc cm−1

A propagation with 1 quantum of perpendicular vibrational energy (≃ 2586 hc cm−1 )

was calculated for the grid 3 (see Fig. 10b), i.e., a (3× 3) surface cell grid. Fig. 36, after

90 fs, shows that the 3 "hcp" sites are already populated. After 150 fs, the 3 "hcp" sites

are less populated and the initial state is recovered. After 400 fs one observes that the 6

"fcc" sites adjacent to 3 "hcp" sites start to become populated. After 500 fs these sites are

less populated and the initial state is recovered.

The motion of the wave packet still has the characteristic quasi-periodic breathing pattern.

The adsorbate moves diffusively from the initially populated site to its nearest stable

"hcp" sites via the three classically most advantageous channels. However, because of the

stronger dilution of adsorbates in grid 3, the number of intermediately unpopulated sites

increases and other "fcc" sites, which were importantly populated during the motion on

grid 2, remain unpopulated during the evolution on grid 3 at similar initial conditions.

One sees that the dilution of the adsorbate makes it stay closer to the initially populated

site for longer times.
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Figure 36 – Snapshots of the wave packet propagation in the (3 × 3) surface cell (grid

3) as reduced probability densities in the 2D space of coordinates along the substrate.

The perpendicular vibrational mode is initially excited with 1 quantum of energy (≃
2586 hc cm−1 ) at the "fcc" site.
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3.2.7 Propagation of D on grid 1 at 〈E〉 ≃ 1801 hc cm−1 .

Here, the wave packet propagation for the deuterium atom on grid 1 is simulated. Fig. 37

shows a simulation where the perpendicular vibration located at the "fcc" site is excited

with 1 quantum of energy (≃ 1801 hc cm−1 ). The effective barrier for the D/Pd(111) is

1959 hc cm−1 , i.e., about 340 hc cm−1 smaller than the effective barrier for the H/Pd(111)

(2298 hc cm−1 , all values given in the harmonic approximation in Tabs. 4 and 2).

Here, too, the effective barrier is significantly larger than the electronic barrier (≃ 1139 hc cm−1 )

and the lateral diffusion happens slowly. After 250 fs a small lateral diffusion to the "hcp"

site can be observed, the "hcp" site is sparsely populated. One observes that after 500 fs

the deuterium atom is found completely in the "fcc" site, performing again a quasi-periodic

motion for this lateral diffusion.
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Figure 37 – Snapshots of the wave packet propagation for D/Pd(111) as reduced prob-

ability densities in the 2D space of coordinates along the substrate. The perpendicular

vibrational mode is initially excited locally at the "fcc" site with 1 quantum of energy

(≃ 1801 hc cm−1 ).
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3.2.8 Propagation of D on grid 1 at 〈E〉 ≃ 2560 hc cm−1 .

Exciting the perpendicular vibrational mode with 2 quanta of energy (≃ 2560 hc cm−1 ),

locally at the "fcc" site, yelds an initial wave packet that lies energetically above the

effective barrier (≃ 1959 hc cm−1 ). Subsequently, one notices a fast lateral diffusion

(Fig. 38). Readily after 90 fs the "hcp" site becomes clearly populated.
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Figure 38 – Snapshots of the wave packet propagation for D/Pd(111) as reduced prob-

ability densities in the 2D space of coordinates along the substrate. The perpendicular

vibrational mode is excited with 2 quanta of energy (≃ 2560 hc cm−1 ).
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3.2.9 Probabilities of elementary sub-cells for D/Pd(111)

As in case of H/Pd(111), we calculated the probability to find the deuterium atom in

the "little diamonds" defined by the sub-cells of the (1 × 1) surface cell (see Fig. 9).

For this calculation the wave packet was propagated from an initial state where the

perpendicular vibrational mode is excited locally at the "fcc" site with 2 quanta of energy

(≃ 2560 hc cm−1 ). Fig. 39 shows Pi(t) with i = 1− 4 to find the deuterium atom in the

respective sub-cell during the propagation. P2(t) ≃ P4(t), i.e., the probability to find the

deuterium atom in the "little diamonds" 2 and 4 (see Fig. (6)) is very small because the

adsorption on the "top" site is not stable. P1(t) decreases by ∼ 25 % after 200 fs because of

the lateral diffusion from the "fcc" site to the "hcp" site. Correspondingly P3(t) increases

by ∼ 25 %. It is noted that the lateral diffusion is quasi-periodic because after 200 fs

P1(t) increases and P3(t)) decreases. After 400 fs P1(t) decreases and P3(t) increases.
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Figure 39 – Probability to find the D in each little diamonds during the propagation.
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3.2.10 Propagation of T on grid 1 at 〈E〉 ≃ 1485 hc cm−1 .

Similarly, the wave packet propagation for the tritium atom was simulated on grid 1.

Fig. 40 shows the wave packet propagation for an initial excitation by 1 quantum of

energy in the perpendicular vibration located at the "fcc" site (≃ 1485 hc cm−1 ). The

effective barrier for T/Pd(111) is 1809 hc cm−1 , i.e., about 475 hc cm−1 smaller than

the effective barrier for the H/Pd(111) system. No remarkable lateral diffusion can be

observed in the first 500 fs of propagation. One observes nevertheless a feeble breathing

motion of the wave packet located at the "fcc" site during the propagation. The breathing

extends preferentially along the 3 diffusion channels linking the "fcc" with its neighbouring

"hcp" sites.
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Figure 40 – Snapshots of the wave packet propagation for T/Pd(111) as reduced prob-

ability densities in the 2D space of coordinates along the substrate. The perpendicular

vibrational mode is initially excited with 1 quantum of energy (≃ 1485 hc cm−1 above the

reference energy at the "fcc" site).



Results for H/Pd(111) and isotopes: Vibrational eigenstates and time evolutions 89

3.2.11 Propagation of T on grid 1 at 〈E〉 ≃ 2108 hc cm−1 .

Upon excitation of the perpendicular vibration localized at the "fcc" site with 2 quanta

of energy (≃ 2108 hc cm−1 ), i.e. an energy above the effective energy (≃ 1809 hc cm−1 )

one observes a very small lateral diffusion. One possible explanation is that the effective

barrier for this isotope is still too important for it to perform easily a lateral diffusion. A

different explanation is that the eigenstates in the energy range studied here are rather

pure states localized at the "fcc" and "hcp" sites. The Fermi resonance mechanism, which

was found to be the driving motor of the diffusion process for the H/Pd(111) and, to some

extent, also for the D/Pd(111) system, is lacking in the case of the T/Pd(111) system.
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Figure 41 – Snapshots of the wave packet propagation for T/Pd(111) as reduced prob-

ability densities in the 2D space of coordinates along the substrate. The perpendicular

vibrational mode is initially excited with 2 quanta of energy (≃ 2108 hc cm−1 ).
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3.3 Thermal wave packet propagation for on grid 1

In this section, a model wave packet evolution is investigated, in which the initial wave

packet mimics a thermalized state localized in one stable adsorption site. The model

"system" is hence a set of states localized at the "fcc" site, while the "environment" is the

set of states that are distributed elsewhere. As the model grid considered here is a (1×1)

surface cell grid, the environment is essentially defined by states localized at the "hcp"

site.

A thermalized state can be constructed as in section 1.9. In the present model, the

eigenfunctions used in Eq. (41) are generated approximately by short time relaxations

starting from states that are localized at the "fcc" site. Only four different initial states

are considered: three states have each one quantum of vibrational mode along the x, y and

z coordinates, respectively; the forth state is the non excited ground state at the "fcc" site.

The short time relaxation generates the four states that correspond to a localized ground

state and to three localized states with each having nearly one quantum of vibrational

excitation. Up to room temperature, higher lying states are expected to have very small

populations and are therefore neglected, in this model. Technically, the superposition of

the thus obtained functions, which are stored in the restart files, is calculated with the

sumrst routine of the MCTDH package. The superposition coefficients by which each

function is multiplied were generated via the routines for the calculation of Boltzmann

weights (Appendix A) and random phases (Appendix B). The energies 0, 744 (2 times)

and 1048 hc cm−1 were used for the coefficients of theses 4 states.

Fig. 43 shows snapshots of the thermal wave packet evolution at 300 K. After 250 fs the

"hcp" site is already populated, showing that a lateral diffusion of hydrogen atoms on

Pd(111) might take place at 300 K. Fig. 42 shows the probability (Pi(t) with i = 1, 4)

to find the hydrogen atom in the sub-cells defined in Fig. 9 during the propagation.

One notes in Fig. 42a a decrease of 8% in the sub-cell where the hydrogen is initially

localized , i.e. in the sub-cell defining the "system". That of the "hcp" site increases by

4% (Fig. 42c). Figs. 42b and 42d show that the populations of the remaining sub-cells

increase correspondingly.
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The global time evolution indicated in these figures suggests that an equilibrium between

"system" and "environment" is readily established after about 200 to 300 fs of evolution.

The mean asymptotic populations are approximately 92% for the system, and 8% for

the environment. The later can be decomposed into 4% for the sub-cell containing the

"hcp" site, and 2 × 2% for those sub-cells containing essentially "top" sites. This result

is unexpected, as the thermal population ratio of the ground states at the "hcp" and

"fcc" sites is about exp(−153/(3/2 × 300)) ≈ 0.47 at 300 K (see Tab. 1), whereas the

present simulation yields a ratio of 4/92 ≈ 0.04. We should therefore conclude that

thermalization is far from complete after 10 ps of evolution. Indeed, from the value for

the diffusion rate calculated for the same system from a quantum transition state theory

in [53], i.e. D ≈ 10−5.5 cm2/s at 300 K, we estimate a life time τ = γl2/(2×2×D) ≈ 9.5 ps

for the population of sub-cell 1; l = 2h = d/
√
3 (see Figs. 4 and 6b), d ≈ 275 pm is the

Pd − Pd distance and γ = 3 is the number of paths linking adjacent sites.
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Figure 42 – Probability to find the H in sub-cells defined in Fig. 9. The initial wave packet

corresponds to that used in Fig. 43.
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Figure 43 – Snapshots of the wave packet propagation as reduced probability densities

in the 2D space of the xc and yc coordinates along the substrate. The initial state is a

locally thermalized state at the "fcc" site (see text).



Chapter 4

Stationary states of H2/Pd(111)

4.1 Analysis of the PES for H2/Pd(111)

The potential energy surface for H2/Pd(111) is obtained by setting nH = 2 in the REBO

subroutine (see section 2.2 and Appendix C). As for H/Pd(111), and, before calculations

using the MCTDH code are performed, we tested the PES by reproducing some results

that have already been published [1, 12] in order to understand and to ensure the proper

implementation of this code. Results will be shown for the routines based on the two

units cells, 3 × 3 and 10 × 10. Each unit cell has 5 layers, thus the units cells have 45

and 500 atoms of Pd, respectively.

The coordinate system for the interaction of the hydrogen molecule with the surface in six

dimensions can be represented by polar coordinates for the internal degrees of freedom

and Cartesian coordinates for the center-of-mass motion. See also Figure 44, where x

and y are the coordinates for the center-of-mass motion parallel to the substrate, the

"frustrated translation", z is the distance from of molecular center to the surface, r is the

bond length of H2, θ is the polar and φ the azimuthal angle of orientation of the molecular

axis.

94
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H

H
z

r

x

ϕ

θ

y

Figure 44 – Coordinate system for dissociation of H2 on a surface. In the scheme,

x, y, and z are the center-of-mass coordinates of H2, r is the H− H distance, θ is the

polar angle of the molecular axis with the z-axis and φ is the azimuthal angle.

The following results of PES of H2/Pd(111) were obtained for the units cells 10 × 10.
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(a) Unit cell 10 × 10.

(b) Figure adapted from ref. [1].

Figure 45 – Variation of the potential energy as a function of the distance of H2 to the

surface. The bond length of H2 is 75 pm and the molecular center is perpendicular to the

surface on the so-called "fcc-fcc" site (see text). (a) is the evaluation of the REBO routine

along the same section as figure 5 that used in ref. [1], which is reproduced here in (b)

(● REBO points and ■ original DFT points) with x = 279 pm, y = 161 pm, r = 75 pm,

θ = 00 and φ = 00. The number of points calculated in the range 1 ≤ z/Å ≤ 5 is 101.
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The figure from the original work can be fairly well reproduced by the present evaluation.

Our results, obtained by a finer interpolation of the REBO points, indicate that there is

some corrugation for both units cells. This corrugation is not visible in the figure 5 of the

original article which is a more coarse grained representation of the REBO points.

The figures bellow show the variation of the potential energy as a function of the bond

length of H2 when the molecular axis of H2 is parallel to the surface on a so-called "fcc-fcc"

site for the two units cells. The "fcc-fcc" means that one atom is located on one fcc site,

the other atom is located on a next lying fcc site.

It is noted that the PES of H2/Pd(111) calculated at z = 250 pm for the two units

cells are slightly different from the one published in [1]. One notes that there is a hump

near 200 pm, which is not visible in [1] (figure 46c). In the latter, the number of points

at which the potential has been evaluated is smaller than the assessments made in this

report. This hump is artificial and may be eliminated for example by reducing the number

of evaluations around 200 pm.
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(a) Cut in r when z is 100 pm in unit cell 10 × 10.

(b) Cut in r when z is 250 pm in unit cell 10 × 10.

(c) Figure adapted from article [1].

Figure 46 – Variation of the potential energy as a function of r when the molecular axis

is parallel to the surface on the "fcc-fcc" site. The figure (c) is adapted from ref. [1].
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The Figs. 47a and 47b show the same cuts shown in Fig. 46 but for a larger range in

r. Now we can note the periodicity of the unit cell 10 × 10 along the coordinate r till

1500 pm on the "fcc-fcc" site, with x = 139 pm, y = 161 pm, θ = 900 and φ = 00.

(a) Cut in r when z is 100 pm in unit cell 10 × 10.

(b) Cut in r when z is 250 pm in unit cell 10 × 10.

Figure 47 – Variation of the potential energy as a function of r when the molecular axis

is parallel to the surface on the "fcc-fcc" site.

We note that the reference state with zero energy is defined in the REBO routine as

the state where the hydrogen molecule is desorbed from de substrate (z → ∞) and the

interatomic distance is at the gas phase equilibrium value (about 75.14 pm). This means

that potential energies at the stable adsorption sites are negative in the original REBO
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routine.

It is noted that when H2 is at z = 250 pm, the potential does not look like a simple

potential, differentiable, as the Morse potential, what would be expected. The shown

discontinuity in the slope seems also to be an artefact and we must then conclude that

the potential is not global, in particular for z exceeding 250 pm, the representation cannot

be used for dynamical calculations that would involve the dissociation of the diatomic far

away from the substrate. These regions of configuration space are hardly probed in the

dynamics discussed in the present work, which renders the discontinuities a less severe

problem here.

The cuts in Fig. 48 show, for the units cells 10 × 10, the displacement of H2 on the

Pd(111) surface along of x with z = 100 pm, r = 279 pm, θ = 900 and φ = 00. In a) the

molecular center is on the "fcc-fcc" site (y =161 pm), and in b) the molecular center is on

the so-called "hcp-hcp" site (y =81 pm).

The Fig. 49 shows a cut in y when x is 279 pm. It is noted that there are two wells

separated by an energy barrier, as already see in Fig. 8.

The wells observed in Fig. 49 are two most stable adsorption sites for H2/Pd(111) system,

the "fcc-fcc" and "hcp-hcp" sites. It is noted that there is a small difference of energy

between the two wells (see also Fig. 8).

In [12] the adsorption energy of H2/Pd(111) on the "fcc-fcc" site is -0.996 eV, for the

"hcp-hcp" site it is -0.892 eV, for the "b-t-b" site is -0.658 eV and for the "top-top" site it

is positive: 0.324 eV. The adsorption energy is defined here as the energy difference on

the electronic potential energy surface between the adsorbed structure and the isolated

molecule in the gas phase when r = 74 pm. If one looks at Fig. 49 one can say that

the deeper well is the "fcc-fcc" site and the second deeper well is the "hcp-hcp" site. The

barrier energy that separate the two wells is the "b-t-b" site.
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Figure 48 – Variation of the potential energy as a function of x for the unit cell 10× 10,

with a) y = 161 pm, z = 100 pm, r = 279 pm, θ = 900 and φ = 00, b) y = 81 pm,

z = 100 pm, r = 279 pm, θ = 900 and φ = 00.

Fig. 50 shows a scheme that helps us to understand the displacement of H2/Pd(111) along

yc. One can see that after the "hcp-hcp" site, the hydrogen atoms are on the site called

"top-top", i.e. each H is on top of a Pd atom. The adsorption is unstable (0.324 eV [12])

at this site.

Tab. 11 summarizes the adsorption energy of H2/Pd(111) (Ead) at the several sites, the

distance between the two hydrogen atoms (dH− H), the distance of the molecular center

of H2 to the surface (hH) and the distance H− Pd (dH− Pd). All the local minima were

calculated with the algorithm described in [4].
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b−t−b

fcc−fcc hcp−hcp
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Figure 49 – Variation of the potential energy as a function of y for the two units cells

with x = 279 pm, z = 100 pm, r = 279 pm, θ = 900 and φ = 00.
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Figure 50 – Different adsorption sites of H2 on Pd(111).
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Table 11 – Adsorption energy Ead for the different reaction sites of Pd(111) (10 × 10

unit cell). The values in parentheses are found in reference [12]. See text and Fig. 50 for

the definition of the quantities.

Sites fcc-fcc hcp-hcp b-t-b fcc-t-hcp fcc-hcp bridge-bridge top-top

Ead/ eV -1.143 -1.120 -0.829 -1.123 -0.929 -0.193 0.284

(-0.996) (-0.892) (-0.658) (-0.694) (-0.694) (-0.382) (0.324)

dH− H / Å 2.711 2.705 2.742 3.163 1.880 0.914 2.751

(2.79) (2.79) (2.79) (2.79) (1.61) (1.40) (2.79)

hH / Å 0.880 0.873 1.033 0.847 0.853 1.500 1.533

(0.84) (0.84) (1.01) (0.83) (0.83) (1.04) (1.55)

dH− Pd / Å 1.824 1.788 1.721 2.923 1.939 2.528 1.931

(1.82) (1.82) (1.72) (1.81) (1.81) (1.74) (1.55)

These results are different from those reported in [12]. For the "fcc-fcc" and "hcp-hcp"

sites there is the same qualitative trend. However for the "fcc-t-hcp" there are larger

differences. The "fcc-t-hcp" site is as stable as the "hcp-hcp", -1.123 eV and -1.120 eV,

respectively.

The most stable site yields hence an adsorption energy of 1.143 eV ≈ 9220 hc cm−1 . The

experimental adsorption energy Ead for H2/Pd(111) obtained by thermal desorption spec-

troscopy [21] is approximatively 7300 hc cm−1 . The adsorption energy on the electronic

surface is 8100 hc cm−1 . To estimate the latter, the following zero point energies were

assumed the ZPE: 2200 hc cm−1 [54] (H2(g)) and 3000 hc cm−1 [22] (2H/Pd(111)(s)).

The experimentally estimated energy on the electronic PES is about 1100 hc cm−1 smaller

in magnitude than the theoretical value from the H2/Pd(111) PES. This difference is

quite important, which might be related to the quality of the method used to perform

the electronic structure on which the REBO potential is used (see Appendix C), or the

quality on the REBO representation itself, as discussed above, in particular in relation to

the singularity found at z = 250 pm (Fig. 47b), or to both.
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Table 12 gives the coordinates and the nth order saddle point (n) of each adsorption sites.

All the local minima and saddle points were calculated with the algorithm described in [4].

Table 12 – Coordinates for the adsorption sites.

x/ d y/ d z/ 100 pm r/ 100 pm θ/deg φ/deg Ead/ eV n

fcc-fcc 1
2

2h 0.880 2.712 90.000 0.000 -1.143 0

hcp-hcp 1 h 0.873 2.705 90.000 0.000 -1.120 0

b-t-b 1
2

3h 1.033 2.747 90.000 360.0 -0.829 2

fcc-t-hcp 1 6h 0.847 3.163 90.000 90.00 -1.123 0

fcc-hcp 1 3h 0.853 1.880 90.000 90.00 -0.929 1

bridge-bridge 1
2

4h 1.500 0.914 90.000 0.000 -0.193 2

top-top 1 3h 1.533 2.751 90.000 0.000 0.284 4

d = 275.114 pm, h = d

2
√

3

It is noted that the distance r between the hydrogen atoms when they are on the "fcc-fcc"

or "hcp-hcp" site is not equal to d = 275.114 pm. There is a difference of 39.14 mm which

can be explained by the non-zero distance of the dissociated hydrogen molecule from the

substrate at equilibrium.

Fig. 51 is similar to Fig. 7. The one dimensional cut of the potential energy surface along

z, Fig. 51, shows the adsorption of H2 on top of the "fcc-fcc" site in first layer, which is

positioned at z = 0. The adsorption minimum occurs at about z = 98 pm. The adsorption

energy is ∼ 1.143 eV (∼ 9220 hc cm−1 ). This well is the deepest of those seen in the

figure. The two other wells correspond to sub-layer adsorption and can be considered to

be an absorption of H2, in the bulk. The PES from [12, 28] was not developed to study

the absorption of H2 quantitatively, therefore the range chosen for the dynamical studies

carried out in this thesis is 20 ≤ z/pm ≤ 140, where there is dissociative adsorption.
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Figure 51 – Variation of the potential energy as a function of z with x = 275.114 pm,

y = 158.837 pm, r = 275.114 pm, θ = 900 and φ = 00.

4.2 Potential representation (POTFIT)

Fig. 52 shows the contour lines representation for H2/Pd(111). One see two adsorp-

tion "fcc-fcc" sites localized at 750 hc cm−1 , one adsorption "hcp-hcp" site localized at

1100 hc cm−1 , one adsorption "fcc-t-hcp" site localized at 1450 hc cm−1 and three adsorp-

tion "fcc-hcp" sites localized at 2500 hc cm−1 .

To construct potential energy operators for the 6D system to be used in the MCTDH

code a relevant region was fitted to a sum-of-products functional form (see Eq. (16)) via

the POTFIT routine of the MCTDH program. This region was chosen by the energy

bounds -9275.3 hc cm−1 < V < 0 covering about 18 % of the grids points. The L
2-error

for the representation of V app(x1, y1, z1, x2, y2, z2) in products of bi-dimensional functions

(see Eq. (16)) is 82.6 hc cm−1 .

The L 2-error for this case is larger than that for the 3D system (∼ 0.03 hc cm−1 ). Fig. 52
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Figure 52 – Contour line representation for H2/Pd(111). The values on contour lines are

in units of hc cm−1 , x2c ≃ 120 pm, y2c ≃ −70 pm and z1c = z2c = 95 pm.

represents a PES cut , where one hydrogen atom is centred approximately at the "fcc"

site (x2 ≃ 80 pm, y2 ≃ −80 pm and z2 = 95 pm) and the other hydrogen atom is free to

move in the xy plane, but for constrained to z1 = 95 pm.

The representation is not optimal as we cannot place the hydrogen atom perfectly at the

"fcc" site, (x2 = 91 pm, y2 = −91 pm and z2 = 95 pm). To improve this representation it

is necessary to increase the expansion orders nκi
in Eq. (16). However, for a larger number

of potential terms, the amount of memory allocated exceeds 0.5 gigabytes and also the

calculation becomes more expensive. The time duration to perform this calculation is

about 80 hours, on currently available processors (2.4 GHz at 8 GB memory - the routine

is currently not parallelized). Parameters needed to obtain the natural potentials are

given in Tab. 13.
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Table 13 – Calculation parameters for the H2/Pd(111) system (see also Tab. 6). Param-

eters apply to a (2× 2) surface cell grid and bases 1 to 3 (see text).

grid parameters

coordinate DVR DVR-parameters Nκi

a) Mκi

a) Mκi

a)

(κi) 1(b) 2(b)

xi or yi EXP x
(min)
i = y

(min)
i = −d, 21 40 46

x
(max)
i = y

(max)
i = d (c)

zi SIN z
(min)
i = 20 pm, z(max)

i = 170 pm 11 18 19

integration parameters

integration or parameters

extrapolation scheme

CMF initial time interval 1.0 fs; accuracy parameter 10−3

RRDAV/A maximal order 10000; accuracy 10−9; eps_inv = 10−9

RK8/spf accuracy 10−8; initial step size 0.1 fs

“potfit” parameters

natural potentials z1 and z2 are “contracted”

x1 = x2 = 120

y1 = y2 = 120

correlated weights −9275.3 hc cm−1 < V < 0 ; covering 18 % of the grid points hc cm−1

fit characteristics weighted rmsc) 82.6 hc cm−1 (grid point relevant)

a) Nκi
is the number of primitive functions of the coordinate combined κi (κ1 = x1, y1; κ2 =

x2, y2 and κ3 = z1, z2),Mκi
is the number of single particle functions.

b) basis 1 and basis 2 with the same Nκi

c) d = 275.114 pm is the distance between nearest neighbour palladium atoms [45].

d) root mean square deviation
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4.3 Eigenstates of H2/Pd(111)

We consider a 2× 2 surface cell grid, whose elementary cell is depicted in Fig 53. This

cell may be decomposed in 4 elementary cells of the 1× 1 surface cell grid, which can be

numbered by the digits 1 to 4, as indicated in the figure. Each 1× 1 cell hosts a “fcc”

(bold circle) and a “hcp” (simple circle) adsorption site. For simplicity, we name the “fcc”

sites “A” sites, the “hcp” are the “B” sites. There are hence four Ai and four Bj sites in

the 2× 2 cell, where i and j range from 1 to 4.

"fcc"
"hcp"

1 2

34

x

d

−d

y−d d

Figure 53 – Scheme of the 2× 2 surface cell with numbered 1× 1 surface sub-cells as

discussed in the text.

There are 12 = 4!/2! possibilities to arrange the two hydrogen atoms in the A-sites of

the 2× 2 cell, which should all minimize the total energy of the system, because the

A-site is the energetically most stable site per atom. However, because of the twisted

geometry of the cell, only ten out of the 12 sites yield the same interatomic distance, and

it turns out that there are indeed 10 states whose energies cluster in a level of lowest

energy states. The combination that has a larger interatomic distance can be denoted as

A1A3, and forcely leads to a higher energy. Note that, because of symmetry, one may

find one atom at position A1 and the other at A2, or vice-versa, the first at A2 and the

second at A1. Eigenstates are in fact expected to be symmetric or antisymmetric with

respect to the permutation of the two atoms, and the appropriate combination with the

antisymmetric (singlet) and symmetric (triplet) spin eigenstates of the protons will finally
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lead to distinct para- and ortho-hydrogen states. In the present work, no distinction is

made of these modifications.

The first ten eigenstates might therefore be expected to be degenerate. Because of tun-

neling effects, degeneracy is in fact lifted. Tab 14 summarizes the information about

calculated eigenstate energies. Each line in the table lists: a level assignment, which will

be explained below; the degeneracy of the level; the lowest eigenvalue of the level, which

we define as a level edge - in case of the lowest level, the level edge is conventionally taken

as zero; the energy difference between the highest and the lowest eigenvalue pertaining

to the level, which we define as the level width. The table lists values for several bases

considered for convergence checks.

Table 14 – Band edges ν̃/cm−1 , band widths ∆ν̃/cm−1 and band degeneracies g for

H/Pd(111).

n basis 1 basis 2

assignment level level level

degeneracy edge width edge width

1 0A0A 10 0.0 11.0 0.0 11.6

2 0A0B(hex) 6 270.9 3.5 271.0 1.9

3 0B0B 10 294.1 11.5 293.4 13.2

4 0A0A(dia) 2 756.8 0.3 757.7 0.04

5 0A0B(crs) 8 872.9 1.5 873.4 1.7

6 21
A
0A 40 915.2 151.0 904.8 152.4

7 0B0B(dia) 2 1114.8 0.2 1115.9 0.3

8 21
A
0B(hex)+0A21

B
(hex)+21

B
0B 12 1185.5 >550. 1185.1 >550.

9 0A0B(dia) 2 1196.5 2.9 1197.7 a

10 11
A
0A 20 1291.0 37.7 1290.4 35.8

11 11
A
0B(hex)+0A11

B
(hex)+11

B
0B 32 1467.9 180.4 1463.2 159.4

...
...

...
...

a the second component of this level could not be firmly assigned
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The level assignment is based on both the combinatorial arrangement of atoms on the

stable sites, as already outlined above, and on the analysis of the probability density

distributions; we also consider as well as the analysis of transition matrix elements in-

volving linear dipole moment operators parallel (x and y coordinates) or perpendicular

(z coordinates) to the substrate. Because of the twisted geometry of the coordinates, the

following matrix elements have been computed: M (par)
nm = |Xnm|2 −Re(XnmYnm) + |Ynm|2

and M (per)
nm = |Znm|2, where κnm = 〈ϕn|κ|ϕm〉, and κ = x, y or z.

For the assignment, we use symbols related the level assignment introduced above for the

H/Pd(111) system. Hence, for the ground state level, we speak of all hydrogen atoms

being in the “fcc” (or A-) site, and in their ground state, i.e. in a 0A nodeless state. We

name the level accordingly 0A0A, meaning one 0A for each atom.

Next to this level, a level of 6 nearly degenerate states is found, which corresponds to

one atom being in an “fcc” site located around the central palladium atom, the other in

the “hcp” site diagonally opposed to it. There are 6 possible configurations of this type,

A2B4, B4A2, A3B1, B1A3, A4B2, B2A4. We name this level 0A0B(hex). The next level are

the 10 configurations of the 0B0B type, which correspond to the 0A0A configurations of

the ground level (i.e. all BiBj configurations but B1B3, with atoms located at the “hcp”

sites).

The next level found (level 4) is nearly two-fold degenerate, and corresponds to the con-

figurations where the two hydrogen atoms are in “fcc” sites A1 and A3, which are more

distant one from the other than the other AiAj configurations, which explains the energy

difference to the ground level. We call this level 0A0A(dia). It is interesting to note that

hydrogen atoms still interact rather strongly on the present PES, even if their distance

exceeds the Pd-Pd distance.

Level 5 in the table consists of 8 nodeless states corresponding to ground state atoms in

the configurations A1B2, B2A1, A1B4, B4A1, A2B3, B3A2, A4B3, B3A4. We name this

level 0A0B(crs).

Level 6 contains a first set of states where one hydrogen atom is excited with 1 quantum

of a vibrational motion along x or y, i.e. mode 2 according to the nomenclature adopted
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previously for the vibrational modes of H on Pd(111). As the lowest level has 10 config-

urations, and each configuration has 2 x and 2 y components (one per atom), there are

40 possible configurations with one H-atom excited in mode 2. We name this level 21
A
0A.

This is the level pertaining to the fundamental parallel transitions from the “fcc” sites.

Level 7 is again a level of nodeless states similar to level 4, but with H-atoms occupying

the “hcp” site.

Level 8 contains all states that can be reached from levels 2 and level 3 by a simple excita-

tion of each one of the H-atoms by one quantum of mode 2. Levels 2 and 3 are composed

of totally 16 configurations, the total number of simple excitations is therefore 64, which

gives the degeneracy of this level. It extends over a broad range of energies that go beyond

the energies calculated in this study, and we can only give a lower bound of its width. The

states can be rather mixed, we therefore name this level 21
A
0B(hex) + 0A21

B
(hex) + 21

B
0B.

From level 8 on, levels start to mingle. Level 9 is composed of nodeless states correspond-

ing to the configuration A1B3.

Level 10 is the level pertaining to the fundamental perpendicular transitions from the “fcc”

sites. It contains 20 states, each having one H-atom singly excited in mode 1, following

our nomenclature for the vibrational modes of the H/Pd(111) system. We therefore name

it 11
A
0A.

Level 11 contains all states that can be reached from levels 2 and level 3 by a simple

excitation of a H-atom by one quantum of mode 1. There are 32 states of this type.

Tab 14 does not report on other levels whose edge lies above 1500 hc cm−1 . There

are many states intermingled with the reported levels, which were not considered in the

table. In particular, we expect 16 additional levels with nodeless states that lie above

1600 hc cm−1 . These states correspond to configurations of the type A1B1, which are

clearly too energetic.

The arithmetic center of level 6 is located at 991 hc cm−1 . That of level 10 is at

1310 hc cm−1 . This means that the fundamental parallel transition in the H2/Pd(111)

system is about 250 cm−1 above the calculated parallel transitions for the H/Pd(111),
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and about 200 cm−1 above the experimental value for this transition (see Tab. 8). The

perpendicular transition is similarly displaced with respect to the data given in Tab. 8.

This discrepancy could be related to a lack of convergence of the 6D calculations docu-

mented in this section. As the values in Tab. 14 do not change much when the PBF-basis

is increased, bad convergence, if at all, could be related to the quality of the POTFIT

representation. Further convergence tests must hence be carried out.

However, if convergence is reached, the discrepancy could reveal some odd characteristics

of the original REBO representation of the PES. As a third hypothesis, the discrepancy

could hint at a real phenomenon, in that the HREELS spectra were recorded under con-

ditions where H-atoms were highly diluted on the substrate so that mono-atomic spectra

were recorded. This is interesting, as recent experimental findings report on instantaneous

self-assembling of isolated H-atoms on copper [55] and other metallic substrates.



Chapter 5

A brief comment on H2/Cu(100)

Another system that was initially investigated in the context of this thesis is theH2/Cu(100)

system, for which a PES representation was published quite some time ago, and promi-

nently used in quantum dynamical calculations of the scattering of H2 on the copper

surface, which have lead to a good understanding of measured scattering and sticking

probabilities [2, 3]. We have thus initially started to investigate this surface, similarly to

the procedure described in section 4.1 above.

One of the original purposes of this thesis was to investigate the influence of different

dynamical and structural properties of the adsorbates or their diffusion dynamics on dif-

ferent substrates. It turned out quite readily that a major problem that persists to date is

the quality of the underlying potential energy surfaces. The number of available analytical

PES representations may be large. However, such representations are too often not ap-

propriate to be used for all kind of calculations. We saw, for instance, that the PES used

in the present work for the H2/Pd(111) system is both qualitatively and quantitatively

sufficient to be used for studies of the diffusion dynamics, but it lacks even qualitative

criteria at large distances from the substrate.

113
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The routine to calculate the PES for H2/Cu(100) was provided to us by M. Somers. In

reference [2], topic B (2D cuts) pag. 3846, the points were defined in the range (0 ≤
Z ≤ 7 a0, 0.5 a0 ≤ r ≤ 4.8 a0) and the H2/Cu(100) PES was determined by spline

interpolations. It is noted that the upper limit of r defined in the article (r ≤ 4.8 a0)

coincides exactly with the point where the potential becomes constant as the figures shown

below indicate.

(a) One dimensional section of the PES as function of the coordi-

nate r, with x = 0.00 pm, y = 127.5 pm, z = 60 pm, θ = 900, φ =

00. The hand-drawn dashed line represents the expected func-

tion (see text).

(b) As Figure 54a, but with x = 127.5 pm, y = 127.5 pm, z =

60 pm, θ = 900, φ = 00.

Figure 54 – One-dimensional sections of the H2/Cu(100) potential from [2, 3].
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These results for the bridge and hollow sites (Figs. 54a and 54b) show that the potential

becomes constant at 4.8 a0 ≃ 255 pm = d, where d is the distance between two Cu atoms.

When the molecule centre is at a hollow site (Fig. 54b), the potential energy should be

maximum (a barrier), because then the H-atoms are closest to the Cu atoms, when r = d.

But the figure leads us to understand that after 4.8 a0 atoms behave as free-particles. This

is most likely a technical artefact of the representation. The steep decrease of the PES

shown in both figures for very short distances of the atoms to the substrate is probably

also an artefact. This artefact is less serious here, as we would not intend to probe regions

with very small values of r.

The expected function is indicated by the hand drawn dashed line in Fig. 54a. The

molecular center is at the bridge site. Here, the PES should increase, when the H atoms

are separated beyond re, with modulations governed by the H − Cu interaction and the

periodicity of the lattice. Very clearly, the PES5 representation from [2,3] is not global, as

it does not mimic the expected behaviour even qualitatively. In the quantum dynamical

simulation carried out in [3], H2 molecules were scattered at the Cu substrate and the

wave packet was absorbed for r beyond 4.8 a0 by an optical potential. Such a trick cannot

be applied in the context of the present investigation of the frustrated translation.
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If one considers the molecular center of mass at the bridge site varying the potential as a

function of H− H distance, might result in two situations. The first, depicted schemat-

ically in Fig. 55b, in the case where the interaction between the hydrogen atoms can be

considered more important than the H− Cu interaction. Here, the PES should increase,

when the H atoms are separated beyond re, with modulations governed by the H− Cu

interaction and the periodicity of the lattice. In the other situation, Fig. 55a, the H−H

interaction is weaker than the H− Cu interaction, and here the potential energy function

should be periodic with a period 2re.

�� ���
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 ��� ��� �� ���

(a) Expected function when H − H interaction is not impor-

tant.

�� ���
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(b) Expected function when H − H interaction is important.

Figure 55 – The two expected functions for the one dimensional in bridge site.
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Note that the H2/Pd(111) discussed above yields interaction energies that correspond to

the situation depicted in Fig. 55b, i.e., the H− H interaction at the adsorption site is

somewhat more important that between H and Pd atoms.

An extension of PES5 to include large positions of the configuration space in x and

y is needed before the MCTDH approach can be applied here to study the frustrated

translation. The main subject of this project is neither to develop a new PES nor to

do calculations of the electronic structure to include more positions and obtain a better

description of the configuration space. It is therefore decided to replace the study of the

H2/Cu(100) system by that of H2/Pd(111), the PES of which is known to have a very

suitable analytical representation [12, 28].

The unit cell of Pd(111) chosen to perform calculations of the quantum dynamics of

H/Pd(111) or H2/Pd(111) is 10 × 10 because the range in which we want to study the

adsorption of H2 presents realistic results and for this range one can consider that this

PES [12, 28] is suitable to be used in MCTDH.



Chapter 6

Full quantum calculations of the

diffusion rate of adsorbates

This chapter is an extract from [56] and presents some preliminary calculations of the

diffusion rate of hydrogen atoms from eigenvalues and eigenfunctions.

The diffusion of adsorbed particles is an important process intervening in heterogeneous

catalysis. Yet, and despite the significant progress achieved in the past decades in the

domain of surface science, our knowledge about such elementary steps in catalysis remain

modest, both experimentally and theoretically. In long time domain of milliseconds to

seconds, scanning tunnelling microscopy (STM) is capable of unravelling some of the

details of this motion. For instance, Jewel et. al. report on quantum tunnelling of

isolated hydrogen atoms adsorbed on Cu(111) terraces, which are observed with STM and

a spatial resolution of a few tenths of a nanometre [55]. These experiments, carried out at

5 K, show the potential technological application arising from the interaction between the

mobile adsorbates leading to the formation of self-assembled clusters. However, the time

resolution of these experiments does not allow us to follow the motion of the H atoms in

real time, interpreted in these papers as arising from tunnelling.

The motion of hydrogen atoms adsorbed on metal surfaces has been explored with pi-

cosecond time in 3He spin-echo experiments for H/Pt(111) [57] and H/Ru(0001) [58]. The

primary quantity determined in these experiments is the intermediate scattering function

118
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(ISF) I(q, t), where q is the wave vector related to the momentum transferred from the

scattered 3He atoms to the hydrogen atoms moving on the surface, and t is the time. In a

previous work, Alexandrowicz et. al. reported on quasi-elastic broadening measurements

from 3He spin-echo experiments on CO/Cu(100) [25]. They observe a quasi-elastic broad-

ening that varies from 0 to about 1 µeV as function of the momentum transferred to the

CO molecules along either the 〈110〉 and the 〈100〉 direction.

The observed quasi-elastic energy broadening can in principle be related to the width Γ

of the dynamical structure factor (DSF) (DSF) S(q, E), which is the temporal Fourier

transform of the ISF. The ISF is the spatial Fourier transform of the pair correlation

function proposed by van Hove [59], who also derived a general expression for the DSF

in terms of the eigenvalues and eigenfunctions pertaining to the stationary vibrational

states of the adsorbates. This expression was never evaluated, to our knowledge, from

within a fully quantum mechanical treatment of the adsobate’s dynamics. In the present

work, we perform such an evaluation using eigenvalues and eigenfunctions derived from

global potential energy surfaces (PES) for the H/Pd(111) system [1,12,27]. The problem

is treated in full dimensionality for the H2/Pd and H/Pd systems with static palladium

atoms.

A key parameter in the present work is the intrinsic energy broadening Γi related to

the lifetime τi ∝ 1/Γi of vibrational eigenstates. This finite lifetime can be related to

the coupling of the vibrational motion of the adsorbates with either the motion of the

substrate atoms (phonons), or to the motion of electrons beyond the Born-Oppenheimer

approximation (electron-hole pair formation), or to both. Depopulation of vibrational

eigenstates of adsorbates on metal substrates via formation of electron-hole pairs is ex-

pected to proceed on the picosecond time scale [60, 61], or even faster [62], which would

be much faster than the relaxation due to the coupling to phonons [63]. Note that the

picosecond time scale is about the time scale that can be reached with the 3He spin-echo

technique. However, lifetime τ = 1 ps corresponds to an energy broadening of 1.3 meV,

which is about two to three orders of magnitude larger than the broadening typically ob-

served in the aforementioned 3He spin-echo experiments. We shall see that it is possible
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to accommodate the different domains by setting

Γ = Γi + Γd (60)

where Γ is the overall width (full width as half maximum, FWHM) of the DSF; Γi is

the aforementioned intrinsic broadening and Γd can be interpreted as the portion of the

broadening that is caused by diffusion.

6.1 Dynamical structure factor

The quasi-elastic broadening can be calculated as the width of the dynamical structure

factor (DSF) S(q, E) at E = 0, see, for instance figure 9 and the corresponding text

in [64]. An expression for this quantity was proposed by van Hove in 1954, i.e. equation

4 in [59]:

S(q, E) =
∑

n

Pn

∑

m

|〈m|eiqx|n〉|2δ(E − (Em − En)) (61)

In this equation, |n〉 and |m〉 are eigenstates of the scattering center at energies En an Em;

Pn is the Boltzmann population distribution , x is the position vector of adsorbed particle.

If x is its projection on the direction of the momentum transfer, i.e. parallel to the

substrate, qx = qx. In the original equation, matrix elements of a sum over many

particles of individual exponential operators (with particle position vectors xj. In the

present work, we shall restrict the study to a single adsorbed particle.

We shall consider that the vibrational eigenstates are not truly stationary but have a

individual lifetimes τn = h/(πγn) due to the coupling with a continuous or semi-continuous

set of closely lying states pertaining to the motion of other particles (electrons or phonons);

h is the Planck constant and γn is the width (FWHM) of the energy distribution of this

state in the set of the true eigenstates of the full system. Spectral lines such as those

occurring in Eq. (61) involve a pair of eigenstates and will hence have an intrinsic width

(FWHM) Γnm = γn + γm. Consequently, we replace the delta-function in Eq. (61) by the
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Lorentzian distribution

L(E; (Em − En,Γnm) =
1
2π

Γnm

(E − (Em − En))2 + Γ2
nm/4

(62)

In the following, we assume for simplicity that all eigenstates will have the same intrinsic

width Γnm ≡ Γi. This very simple model will indeed allow us to extract some interesting

conclusions, while more elaborate and more realistic models, which we have considered

and which be presented elsewhere, do no alter the qualitative picture of the present results.

Instead of Eq. (61), we shall use hence the following formula to evaluate the DSF:

S(q, E) =
∑

n

Pn

∑

m

|〈m|eiqx|n〉|2L(E; (Em −En,Γi) (63)

6.2 Results

The eigenfunctions for the H/Pd(111) system were already calculated (see subsection

3.1.1) then the matrix elements of the eqx operator are calculated for several values of q

with the crosscorr utility program contained in the MCTDH program package. We shall

evaluate Eq. (63) for a momentum transfer along the surface vector linking two nearest

Pd neighbors (which corresponds to the 〈112̄0〉 crystallographic direction in hexagonal

closed packed cells). In this direction the scalar product is qx = qxc = q(x − y/2). The

section of the potential energy surface for H/Pd(111) chosen is represented in 11b. One

clearly sees the stable adsorption sites, "fcc" and "hcp", which are also indicated in the

scheme 10a. On this PES, the "hcp" site is about 190 hc cm−1 less stable than "fcc" site

(see Tab. 7) and the barrier between the two sites is at about 1150 hc cm−1 above the

"fcc" site (see Fig. 8). There are 4 "fcc" and 4 "hcp" sites per unit cell. The "hcp"/"fcc"

occupation ratio is about 0.37 at room temperature, and we can therefore assume that

the occupation of sites is approximately homogeneous, which makes the present study

mimic a coverage degree 12.5 %.
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Fig. 56 shows the form of S(q, E) for this system, when Γi = 1 meV is assumed.
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Figure 56 – S(q, E)/S(q, 0) for the H/Pd(111) system, assuming as intrinsic broadening

Γi = 1 meV. The inset is a magnification of the function in the region of S(q, E) ≈
0.5(q, 0). Results are for the 〈112̄0〉 crystallographic direction, at T = 250 K.

Fig. 56 shows this variation in terms of the corresponding diffusion rate, defined here, as

α = π∆Γ/h ≈ 0.7596 ps−1 × ∆Γ /meV, where ∆Γ = Γ−Γi. There is currently no exper-

imental result for this function. We may compare the present theoretical result, however,

with experimental results for systems that should be rather similar, i.e. H/Ru(0001) [58],

(figure 1 therein), and H/Pt(111) [57]: the general behaviour of the rate function show in

Fig. 57 reproduces qualitatively very well the form of the experimental functions; however,

the variation range for the rate is a factor 10 smaller than that observed for H/Ru(0001,

and a factor 100 smaller than what is observed for H/Pt(111).
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Figure 57 – Calculated diffusion rate α(q) for atomic hydrogen on Pd(111) along the

〈112̄0〉 crystallographic direction, at T = 250 K. α = π∆Γ/h and ∆Γ is the differential

broadening with respect to Γi, obtained as twice the values of the solutions of S(q, E) =

0.5 S(q, 0) in Fig. 56.

These studies, which include a more realistic modelling of vibrational lifetimes, are cur-

rently being carried out. It can be shown that the variation range of the diffusion rate

increases, if a much larger value of the intrinsic broadening is assumed, meaning a much

shorter relaxation time due to "friction". Relaxation times shorter that those assumed

here for hydrogen on ruthenium or palladium can indeed be expected from theory [65].

A second investigation route includes the study of di-hydrogen structures. It is known that

hydrogen atoms, even if adsorbed at low coverage degrees, form clusters of di-hydrogen

on the substrate [55]. H2 dissociates upon adsorption on palladium or ruthenium, the

adsorbed atoms may interact with each other, however, even at distances larger that the

distance between two neighbouring metal atoms.



Chapter 7

Conclusions

The results obtained for the H/Pd(111) system allowed us to improve our theoretical

description of this system. The following points summarize the most relevant conclusions:

1 Under the assumption that the vibrational spectrum of H2/Pd(111) can be confused

with that of the H/Pd(111) system at very low coverage degree, since the adsorption of

hydrogen molecular is dissociative, this work has provided a somewhat improved theo-

retical reproduction of the main experimentally available transitions (from HREELS).

It has also lead to an important new insight regarding the nature of the vibrational

states underlying the observed transitions. In fact, the systematic inspection of re-

duced probability densities has revealed an important resonance phenomenon between

quantum states that are localized on adjacent adsorption sites. Excited vibrational

eigenstates of H/Pd(111), and to some extend also those of the D/Pd(111) isotopo-

logue, that involve 1 quantum of the perpendicular vibration, i.e., a vibration of the

atom orthogonal to the substrate, are in fact superposition states of states localized on

adjacent adsorption sites having 1 quantum of perpendicular vibration and 2 quanta

of parallel vibration. For 2 adjacent "fcc" and "hcp" sites, 4 states are strongly mixed.

The mixing is the signature of a strong anharmonic coupling that spectroscopists call

a Fermi resonance. And the coupling is also an important driving force of a very fast

diffusion dynamics that takes place within a few hundred femtoseconds and that was

found in this thesis. The resonance is less pronounced for D/Pd(111), and nearly absent

124
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for T/Pd(111) because of mismatching energies of localized states. It should be noted,

that the resonance is quite strong for states lying in the vicinity of the diffusion barrier,

but a detailed account of the relation between energy barrier and the mixing is not

given here.

2 When the coverage degree is large the interactions between the hydrogen atoms may

be come important. Investigations of the 6D system, H2/Pd(111), are appropriate to

show whether interactions between the hydrogen atoms on the substrate are important.

It was shown that the H− H interactions on the REBO PES for H2/Pd(111) are in-

deed quite important. Present results on the vibrational spectrum of H2/Pd(111) seem

to indicate that both the parallel and perpendicular fundamental transition bands are

shifted toward higher wave numbers, when compared to those of H/Pd(111) system.

The later agree fairly well with experimentally determined values. This result is some-

how paradoxical: on one hand the spectrum of H/Pd(111) agrees with the experimental

data from HREELS measurements from [22], on the other hand, Jewell et al [55] have

shown from STM measurements, that hydrogen on copper hardly remains isolated, it

rather forms super-molecular clusters. We have not yet fully explored all explanations

for this paradox. Admittedly, a potential lack of convergence in the present calculations

of H2/Pd(111) eigenstates could be one trivial explanation. However, we cannot discard

some potential failure of the original PES representation used in this work. Finally and

hypothetically, one could also argue that hydrogen on palladium might have a different

behaviour than on copper, or that the infrared spectrum of larger hydrogen clusters on

palladium might be similar to that of a single hydrogen atom, and different from that of

the hydrogen molecule. This hypothese need to be further investigated in future work.

3 Using a newly developed idea [56], a full quantum calculation of the diffusion rate of the

adsorbate was perfomed, in a simulation of the 3He spin-echo scattering experiments.

For this calculation, the eigenfunctions calculated for H/Pd(111) were evaluated in

a formula proposed by van Hove in 1954 for the dynamical structure factor. First

results are promising but so far predictions are based on vague assumptions and simple

models regarding the intrinsic lifetimes of vibrational states. Full 6D treatments of the

diffusion dynamics of H2/Pd(111), in which we shall also consider in a more realistic way

lifetimes of vibrational states of the adsorbates will shed more light into the problem. In
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particular, such studies would enable us to truly simulate the experimentally determined

intermediate scattering function and herewith give accurate values for the diffusion rate

of adsorbates from first principle calculations.



Appendix A - Calculation of Boltzmann weightsn 127

// !CALCUL DES POIDS DE BOLTZMANN A PARTIR DES ENERGIES

// !DES ETATS PROPRES

#include <s t d l i b . h>

#include <std i o . h>

#include <math . h>

#include <s t r i n g . h>

#de f i n e kB 0.6950353 //Constante de Boltzmann en hc cm−1 /Kelvin

#de f i n e T 300.00 //Temperature en Kelvin

i n t main ( i n t argnb , char ∗ arg [ ] )

{

// !VARIABLES GENERALES

i n t Ntot=64,N; //Ntot : Nombre t o t a l d ’ e t a t s ␣ propres

␣ char ␣ strtmp [ 4 0 0 ] ;

␣ // !RECUPERATION␣DES␣ENERGIES␣DES␣ETATS␣PROPRES

␣double ␣E [ Ntot ] ; ␣//Energ ie ␣des ␣ e t a t s ␣ propres ␣en␣hc␣cm−1
␣FILE␣∗IN ;

␣IN=fopen ( " Energy " , " r " ) ; / / Adresse ␣du␣ f i c h i e r ␣ contenant ␣ l e s

␣// en e r g i e s ␣des ␣ e t a t s ␣ propres

␣ f o r ␣ (N=0;N<Ntot ;N++)␣␣␣// Lecture ␣ des ␣ en e r g i e s ␣en␣hc␣cm−1.
␣// des ␣ e t a t s ␣ a l l a n t ␣de␣0␣a␣Ntot−1
␣␣␣␣␣␣␣␣{

␣␣␣␣␣␣␣␣␣ f s c a n f ( IN,"%[^=]=% l f " ,& strtmp ,&E[N ] ) ;

␣␣␣␣␣␣␣␣␣ f g e t s ( strtmp ,400 , IN ) ;

␣␣␣␣␣␣␣␣}

␣ f c l o s e ( IN ) ;
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␣ // !CALCUL␣DE␣LA␣FONTION␣DE␣PARTITION

␣double ␣Z=0. ; ␣␣␣//Fonction ␣de␣ pa r t i t i o n

␣ f o r ␣ (N=0;N<Ntot ;N++)␣Z+=exp(−(E[N]−E[ 0 ] ) / ( kB∗T) ) ; ␣//La␣ r e f e r e n c e
␣//en␣ ene r g i e ␣ (E=0)␣ e s t ␣ l ’ en e r g i e du premier e ta t qui correspond

// a l ’ en e r g i e ␣de␣ po int ␣ zero

␣ // !CALCUL␣DES␣POIDS␣DE␣BOLTZMANN

␣FILE␣∗OUT;
␣ s p r i n t f ( strtmp , " BoltzmannWeight%.0 f " ,T) ; ␣//Adresse ␣du␣ f i c h i e r ␣de␣ s o r t i e
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// !CALCUL DES C o e f i c i e n t s A PARTIR DES poids DES ETATS

// !PROPRES à une c e r t a i n e température

#include <math . h>

#include <cmath>

#include <iostream>

#include <fstream>

#include <s t d l i b . h>

#de f i n e Pi 3 .14159265359

#de f i n e ur f Pi /180 .

us ing namespace std ;

i n t main ( i n t argc , char ∗ argv [ ] )

{

// !VARIABLES GENERALES

i n t Ntot=64,N; //Ntot : Nombre t o t a l d ’ e t a t s ␣ propres

␣ i n t ␣ i s t a t e ;

␣ i f ␣ ( ␣ argc ␣<␣2␣ )

␣{

␣␣␣ cout ␣<<␣ " ! ! ! ! ! ! ␣Arguments␣miss ing ␣ ! ! ! ! ! ! ! ! ! ! ! " ␣<<␣ endl ;

␣␣␣ cout ␣<<␣ " Usage : ␣$PATH/BoltzmannWeight . exe ␣ f i l e ␣ " ␣<<␣ endl ;

␣␣␣ return ␣ 1 ;

␣}

␣ i f s t r e am ␣ t r a j _ f i l e ;

␣ t r a j _ f i l e . open ( ␣argv [ 1 ] , ␣ i f s t r e am : : binary ) ;
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␣ // !RECUPERATION␣DES␣ENERGIES␣ET␣DES␣POIDS␣DES␣ETATS␣PROPRES

␣double ␣E [ Ntot ] ; ␣//␣Energ ie ␣ des ␣ e t a t s ␣ propres ␣en␣u . a .

␣double ␣W[ Ntot ] ; ␣//␣Poids␣ des ␣ e t a t s ␣ propres

␣double ␣RC[ Ntot ] ; ␣//␣ Co e f f i c i e n t ␣ r é e l

␣double ␣IC [ Ntot ] ; ␣//␣ Co e f f i c i e n t ␣ imag ina i r e

␣double ␣phase [ Ntot ] ;

␣ srand␣ ( time (NULL) ) ;

␣N=0;

␣ i f ␣ ( t r a j _ f i l e . is_open ( ) )

␣{

␣␣␣whi l e ␣ ( ! t r a j _ f i l e . eo f ( ) )

␣␣␣{

␣␣␣␣␣ t r a j _ f i l e ␣>>␣ i s t a t e ␣>>␣E[N] ␣>>␣W[N ] ;

␣␣␣␣␣N+=1;

␣␣␣}

␣}

␣ e l s e

␣{

␣␣␣ cout ␣<<␣ " unable ␣ to ␣open␣ f i l e " ␣<<␣ endl ;

␣␣␣ return ␣ 1 ;

␣}

␣ t r a j _ f i l e . c l o s e ( ) ;

␣ // !CALCUL␣DES␣COEFF.

␣ f o r ␣ (N=0;␣N<␣Ntot ; ␣N++)

␣{

␣␣␣phase [N]=( rand ( )∗ 1 . ) / ␣ ( 1 .∗RAND_MAX) ∗ 3 6 0 . 0 ;
␣␣␣RC[N] ␣=␣ sq r t (W[N] ) ␣∗␣ cos ( phase [N]∗ ur f ) ;
␣␣␣IC [N] ␣=␣ sq r t (W[N] ) ␣∗␣ s i n ( phase [N]∗ ur f ) ;
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␣␣␣ cout ␣<<␣phase [N] ␣<<␣ " ␣ c o e f f=␣ " ␣<<␣RC[N] ␣<<␣IC [N] ␣<<␣endl ;

␣}

␣ ofstream ␣ ou t_ f i l e ;

␣ ou t_ f i l e . open ( " c o e f . dat " ) ;

␣ f o r ␣ ( i n t ␣ i ␣=␣ 0 ; ␣ i ␣<␣Ntot ; ␣ i++)

␣{

␣␣␣ ou t_ f i l e ␣<<␣ i ␣<<"␣␣␣"<<␣E[ i ] ␣<<␣ " ␣␣␣␣ " ␣<<␣W[ i ] ␣<<␣ " ␣␣␣␣ " ␣<<␣phase [ i ] ␣<<␣ " ␣

␣}

␣ ou t_ f i l e . c l o s e ( ) ;

␣ return ( 0 ) ;
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SUBROUTINE POSITIONS(XA,YA,ZA)

double precision xa (1000) , ya (1000) , za (1000) , a (100 ) , yf , esma

integer np , nh , nq

np=500 ! number o f Pd atoms

nh=2 ! number o f H atoms

DO j =1,np ! ! ! np=500

! read the parameters o f p o s i t i o n s 1500 o f Pd atoms

XA( 1) = 0.0666666666666663

YA( 1) = 0.0333333333333334

ZA( 1) = 0.0000000000000000

XA( 2) = 0.0666666666666665

YA( 2) = 0.1333333333333330

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! H2Pd111 he l p f i l e s

! coord ina te s : nq , np , xa , ya , za , a , y f

! l e n g t h s are in bohr , ang l e s in rad

! xyz are the coord ina te s o f the molecular cen t r e

! PES i s re turned in har t r e e

SUBROUTINE H2Pd111au(X,Y,Z ,R,T,P,V)

IMPLICIT REAL∗8 (A−H,O−Z)
INTEGER np , nh , nq

DIMENSION XA(1000) ,YA(1000) ,ZA(1000) , a (100)

! parameter ( tocm =219474.6314, toev =27.21138, a0 =0.5291772085)

parameter ( tocm=8065.544647 , toev =27.21138 , a0=0.5291772085)

np=500

nh=2

nq=np+nh

rx=R∗ds in (T)∗ dcos (P)
ry=R∗ds in (T)∗ ds in (P)
rz=R∗dcos (T)
X1=(X)+0.5∗( rx )
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Y1=(Y)+0.5∗( ry )
Z1=(Z)+0.5∗( rz )
X2=(X)−0.5∗( rx )
Y2=(Y)−0.5∗( ry )
Z2=(Z)−0.5∗( rz )
CALL POSITIONS(XA,YA,ZA)

! aa=27.5114 ! the un i t i s angstron

aa=27.5114/ a0 ! the un i t i s now bohr

zamax=0.39066

ZA(NP+1)=zamax+Z1/aa /0.836017

YA(NP+1)=Y1/aa

XA(NP+1)=X1/aa

ZA(NP+2)=zamax+Z2/aa /0.836017

YA(NP+2)=Y2/aa

XA(NP+2)=X2/aa

CALL func (nq , np , xa , ya , za , a , y f ) ! c a l l s ub rou t ine which i s to c a l c

! La va l eur c h o i s i e comme é tan t l e zero d ’ énerg ie , s o i t , l a molecule de H2 i s o

V=YF/ toev + 92.09875

RETURN

END SUBROUTINE H2Pd111au

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! HPd111 he l p f i l e s

! coord ina te s : nq , np , xa , ya , za , a , y f

! l e n g t h s are in bohr , ang l e s in rad

! xyz are the coord ina te s o f the molecular cen t r e

! PES i s re turned in har t r e e

SUBROUTINE HPd_3dt (X,Y,Z ,V)

IMPLICIT REAL∗8 (A−H,O−Z)
INTEGER np , nh , nq

DIMENSION XA(1000) ,YA(1000) ,ZA(1000) , a (100)
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! parameter ( tocm =219474.6314, toev =27.21138, a0 =0.5291772085)

parameter ( tocm=8065.544647 , toev =27.21138 , a0=0.5291772085)

np=500

nh=1

nq=np+nh

X1=X

Y1=Y

Z1=Z

CALL POSITIONS(XA,YA,ZA)

! aa=27.5114 ! the un i t i s angstron

aa=27.5114/ a0 ! the un i t i s now bohr

zamax=0.39066

ZA(NP+1)=zamax+Z1/aa /0.836017

YA(NP+1)=Y1/aa

XA(NP+1)=X1/aa

CALL func (nq , np , xa , ya , za , a , y f ) ! c a l l s ub rou t ine which i s to c a l c

V=YF/ toev + 91.8855

RETURN

END SUBROUTINE HPd_3dt
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Thermodynamic cycle

We have 4 reactions

H2(g) + Pd(s) −−⇀↽−− 2H/Pd(s) ∆1H (64)

H(g) + Pd(s) −−⇀↽−− H/Pd(s) ∆2H (65)

H/Pd(s) + H/Pd(s) −−⇀↽−− 2H/Pd(s) ∆3H (66)

H2(g) −−→ 2H(g) ∆4H (67)

Hess yields:

∆1H = ∆4H + 2∆2H +∆3H

The Tab. 15 shows the enthalpy for the reactions (64), (65) and (67) with and without ZPE

inclusion. ∆2H was estimated from the experimental data [21,66] assuming ∆3H = 0. To

estimate the latter from the former (originally measured data), the following (approx) zero

point energies are assumed (in hc cm−1 ): 2000 [54] (H2(g)), 1500 [22] (H/Pd(111)(s)),

3000 [22] (2H/Pd(111)(s)).

Table 15 – Experimental enthalpy of reactions in hc cm−1 .

values with ZPE values without ZPE

∆1H -7300 [21] -8300

∆2H -21710 -23210

∆4H 36100 [66] 38100



Appendix D - Thermodynamic cycle for the adsorption reaction of H2 on Pd(111) 136

The experimental value of ∆1H is about ≃ 1000 hc cm−1 smaller in magnitude than the

theoretical value from the H2/Pd(111). This difference is quite important. One should also

note that the experimental value is old and probably not very certain either. Theoretically,

we have the following values (in hc cm−1 ) :

Table 16 – Theoretical enthalpy of reactions in hc cm−1 .

Values

∆1H -9220

∆2H -27700

∆3H 8100

∆4H 38100

Here, we assume that ∆4H is as from the experiment, and obtain ∆3H from the above

equation. The latter value is too large, but more problematic is the sign: one should expect

a negative enthalpy of coalescence [55]. Hence, either the assumption on ∆4H is totally

wrong, but that in unrealistic, or the value for ∆2H is not correct. We may estimate a

value for ∆2H from the experimental data, assuming that ∆3H = −1000 hc cm−1 (which

is a reasonable assumption, given the eigenvalues for H2/Pd that we obtained in 6D):

2∆2H = ∆1H −∆4H −∆3H

∆2H = −22700 hc cm−1

If the enthalpy of coalescence is not considered, the enthalpy of reaction (65) is given as

2∆2H = ∆1H −∆4H

∆2H = −23200 hc cm−1
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Brief overview of Density Functional Theory

Several methods based on the calculation of the electronic wavefunction (see for in-

stance [29, 67–69]) allow a high level treatment of the important electronic correlation

problem. Some of these are the MPn (n = 2, 3, 4) [70,71], the CISD [69], the CASPT2 [72],

and the CCSD(T) [69, 73] methods. However, these are all limited to small systems. A

way to study larger systems is to use Density Functional Theory (DFT) [74, 75].

The database used for developing the H/Pd(111) and H2/Pd(111) contain the DFT [12]

calculations obtained with the help of the Vienna ab initio package (VASP) [76]. The

valence orbitals are expanded in a plane-wave basis, with the electron-ion interaction de-

scribed by the ultrasoft pseudopotentials optimized by Kresse and Hafner [77]. The results

are obtained within the framework of the generalized gradient approximation (GGA) and

the exchange-correlation-functional of Perdew and Wang (PW91) [78].

The general idea of Density Functional Theory (DFT) is that the exact ground-state elec-

tronic energy E (Eq. (1)) can be represented by the ground-state electronic density ρ(r),

according to the first and second Hohenberg-Kohn theorem [74]. The first Hohenberg-

Kohn theorem shows that the electron density ρ(r) related to the exact ground-state

wave function ψ (Eq. (1)) is uniquely determined by the external potential of the elec-

trons. Moreover, the second Hohenberg-Kohn theorem shows that the electron density

can be also used as basic variable in order to reach n0 variationally. The electron density

fixes the number of electrons n of the system according to Eq. (68)

n =
∫

ρ(r)dr (68)

where ρ(r) is the electron density and r is the (3D) coordinate of an electron. The electron

density can be decomposed into spin densities ρα and ρβ

ρ(r) = ρα(r) + ρβ(r) (69)
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The total electron energy is a functional of densities, E[ρ]. Closed-shell and open-shell

energies are expressed in a similar manner. This energy is written as

Ē[ρ] = T̄ [ρ] + Ēne[ρ] + Ēee[ρ] (70)

where T̄ [ρ] is the kinetic energy, Ene[ρ] the nuclei-electrons interaction energy and Eee[ρ]

the electron-electron interaction energy. The last term can be divided into a Coulomb and

Exchange interactions, J [ρ] and K[ρ]. The nuclei-electrons interaction energy is written

Ene[ρ] =
∑

a

∫
Zaρ(r)

|Ra − r|d
3r (71)

and the Coulomb interaction is

J [ρ] =
1
2

∫ ∫
ρ(r)ρ(r′)
|r − r′| d

3rd3r′ (72)

The kinetic energy and the exchange energy functionals can be evaluated by solving

a set self-consistent equations which include, in an approximative way, exchange and

correlation effects. In the most and approximation, one considers a gas of n electrons

without interaction [75]. The basic idea of this approximation, also called the Kohn

and Sham (KS) formalism, is splitting the kinetic energy functional into two parts, one of

which can be calculated exactly, and a presumably small correction term [29]. Considering

a gas of n electrons with non interaction between then, the density is written in terms of

a set of auxiliary one-electron functions, orbitals, as

ρ(r) =
N∑

i=1

|φi(r)|2 (73)

The exact kinetic energy is

TS[ρ] =
∑

i

〈φi|
p2

2
|φi〉 (74)
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The orbitals are obtained from the solution of differential equation. The equation for the

system with non interacting electrons is

[

p2

2
+ VS(r)

]

φi = εiφi (75)

where VS(r) is the mean field potential resulting to the electron gas and experienced by

any electron. The total energy for this electron gas system is given by

ES[ρ] = TS[ρ] + Ene[ρ] (76)

In reality the electrons are interacting and the energy ES[ρ] does not provide the total

kinetic energy. However, just as Hartree-Fock (HF) theory the solutions of Eq. (75)

provide ∼ 99% of the total energy. It is necessary to include the explicit interaction of

electrons (the same as in HF theory, one has to include the electronic correlation). Then,

the energy E[ρ] (Eq. (70)) can be re-written according to TS[ρ] and J [ρ]

E[ρ] = TS + Ene[ρ] + J [ρ] + EXC [ρ] (77)

where EXC [ρ] is the energy expressing the electron exchange correlation

EXC [ρ] = (T [ρ]− TS[ρ]) + (Eee[ρ]− J [ρ]) (78)

The first term in the parenthesis is the kinetic energy correlation (the difference between

the exact kinetic energy and that of a system with non interacting of electrons) and the

second term in the parenthesis is the exchange energy containing the correlation energy.

The exchange-correlation potential is

VXC(r) =
dEXC [ρ]
dρ(r)

(79)
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The correlation between electrons of parallel spin is different from that between electrons

of opposite spin. The exchange energy is "by definition" given as a sum of contributions

from the α and β spin densities, as exchange energy only involves electrons of the same

spin. The kinetic energy, the nuclear-electron attraction and Coulomb terms are trivially

separable [29].

EX[ρ] = Eα
X[ρα] + Eβ

X[ρβ]

EC[ρ] = Eαα
C [ρα] + Eββ

C [ρβ ] + Eαβ
C [ρα, ρβ] (80)

Now we must resolve a set of equations given by

[

p2

2
+ Vne(r) +

∫
ρ(r′)

|r − r′|d
3r′ + VXC(r)

]

φi(r) = εiφi(r) (81)

The resulting pseudo-eigenvalue equations are known as the Kohn-Shan equations

hKSφi = εiφi (82)

The problem is how to find an exchange-correlation potential VXC [ρ] that it can be used

for an universal system. Today there are many functionals that describe more or less well

the VXC [ρ] term. According to different approximations, these functionals are divided in

:

• Local Density Approximation (LDA); the density is treated locally as a uniform

electron gas and the density is a slowly varying function [29]. In this approximation,

the exchange energy, Ex[ρ] depends on the local spin densities only at r : this

approach is valid for slowly varying densities and the performance is reasonably

good for the description of atomic and molecular systems, but the accuracy of

energy parameters is not always sufficient [75]. The exchange energy for a uniform

electron gas is given by the Dirac model [79]. Improvements over the LDA reflect

the strongly inhomogeneous densities of real systems.
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• The Generalized Gradient Approximation (GGA) methods are also sometimes re-

ferred to as non local methods; one considers a non-uniform electron gas. The

GGA was devised where the exchange energy, Ex[ρ], depends not only on the spin

densities at r but also on the derivatives of the density. The GGA improves over

the LDA [78,80, 81].

• Hybrid Functionals : This approximation has a degree of precision higher because

it combines exchange and correlation energies obtained by GGA with a certain

fraction of exchange energy given by Hartree-Fock theory [29].

The exchange functional proposed by Perdew and Wang in [78] (PW91 functional) is

given by

EPW91
x = ELDA

x

(

1 + xa1 sinh
−1(xa2) + (a3 + a4 exp−bx2

)x2

1 + xa1 sinh
−1(xa2) + a5x2

)

(83)

where ai(i = 1, 2, ..., 5) and b are suitable parameters and x is defined in Eq. (84), that is

a dimensionless gradient variable, and a, b and c again are suitable parameters [82].

EPW86
x = ELDA

x (1 + ax2 + bx4 + cx6)
1

15

x =
|∇ρ|
ρ

4

3

(84)
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Brief overview of group theory

The concept of molecular symmetry is very useful in spectroscopy to study the spectra

of atoms and molecules. Therefore we use group theory to label and classify the energy

levels of the vibrations of H/Pd(111). The idea of molecular symmetry can be quantified

by the introduction of symmetry operations that means to do a geometry action (such as a

reflection) that leaves the molecule in equivalent positions. These geometrical operations

can be classified into four types: reflections (σ̂v), rotations (Ĉn), rotations-reflections (Ŝn),

and inversions (̂i). For mathematical reasons a fifth operation, the "do nothing" operation

of identity (Ê), needs to be added. Associated with each symmetry operation (except the

identity) is a symmetry element [83].

The point group associated with the ammonia molecule is the C3v group is has six mem-

bers, {Ê, Ĉ3, Ĉ
−1
3 , σ̂v

′

, σ̂v
′′

, σ̂v
′′′

}, associated with three vertical planes of symmetry, where

the identity Ê operator leaves the hydrogen located at "fcc" site unchanged (see Fig. 12 the

blue circle), the Ĉ3 operator rotates the channels of diffusion by 2π/3 = 1200 in a clockwise

direction about the Ĉ3 axis out of the plane. The clockwise direction is defined by viewing

the model (Fig. 12) from de +z direction toward the xy-plane of model. The Ĉ−1
3 operator

rotates the channels in the counter-clockwise direction (that is, by −2π/3 = −1200). The

reflection operator σ̂v (subscript v means the vertical mirror plane), reflects the channels

at a plane containing the z-axis and one of the channels. Three equivalent channels exist

at the "hcp" site (see Fig. 12, the red circles) [83].

The C3v point group is of order 6 and it is divided in three classes (3σ̂v , 2Ĉ3 and Ê).

The first column block of the Tab. 17 shows the three symmetry species. It is seen that

all elements of each symmetry class have the same symmetry characters. The symmetry

species E is a double degenerate one. The second column block lists the characters of

the matrices (of smallest possible dimension) that describes the symmetry of operations.

The third column block indicated which of the irreducible representations correspond

to translations (unit x, y, z vectors) and rotations. The forth column block gives the

corresponding information for quadratic functions that is used for building the molecular

orbitals or selection rules in Raman spectroscopy.
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Table 17 – Character table for C3v point group.

C3v Ê 2Ĉ3 3σ̂v linear functions quadratic functions

A1 1 1 1 z (x2 + y2); (z2)

A2 1 1 -1 Rz -

E 2 -1 0 (x, y); (Rx, Ry) (x2 − y2, xy); (xz, yz)

The quadratic functions representation space for C3v has dimension 9. The reduction

yields a six-dimensional space which splits into a two-dimensional space of type A1 and a

two-dimensional space of type E [84,85]. The A1 symmetry adapted are (x2+y2) and (z2),

the E symmetry adapted are (x2 − y2, xy) and (xz, yz).
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Reduced probability densities for T/Pd(111)
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Figure 58 – Reduced probability density for the third and fifth level (471.2 and

660.1 hc cm−1 , respectively) that represent parallel modes with 1 quantum of energy

(21
B
and 21

B
) in "fcc" and "hcp" sites, respectively, in the xcyc plan.
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(c) Reduced probability density in yz plan.

Figure 59 – Reduced probability density for the fourth level at 650.4 hc cm−1 assigned as

11
A
+ (22

A
). The 22

A
component is visibly very weak.
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(c) Reduced probability density in yz plan.

Figure 60 – Reduced probability density for the sixth level (837.1 hc cm−1 ) assigned as

11
B
+ (22

B
), its label of symmetry is A1(the 22

B
component is very weak).
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(c) Reduced probability density in yz plan.

Figure 61 – Reduced probability density for the seventh level (873.7 hc cm−1 ) assigned

as 11
A
+ 22

A
, its label of symmetry is A1.
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Figure 62 – Reduced probability density for the eighth and tenth levels (912.1 and

1085.7 hc cm−1 , respectively) that represent the vibrational parallel modes with 2

quanta of energy. At 912.1 hc cm−1 the mode is localized at "fcc" site (22
A
) and at

1085.7 hc cm−1 the mode is delocalized in two sites (22
A
+22

B
).
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(c) Reduced probability density in yz plan.

Figure 63 – Reduced probability density for the ninth level (1049.9 hc cm−1 ) assigned as

11
B
+ 22

B
, its label of symmetry is A1.
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Figure 64 – Reduced probability density for the twenty second band (1311.9 hc cm−1 )

assigned as 12
A
+ (22

A
), its label of symmetry is A1(the 22

A
component is weak).
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Figure 65 – Reduced probability density for the twenty ninth level

(1490.9 hc cm−1 )assigned as 11
B
+ (22

B
), its label of symmetry is A1(the 22

B
compo-

nent is weak.
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